
Proceedings of the CoNLL 2020 Shared Task: Cross-Framework Meaning Representation Parsing, pages 40–52
Online, Nov. 19-20, 2020. c©2020 Association for Computational Linguistics

40

Hitachi at MRP 2020: Text-to-Graph-Notation Transducer

Hiroaki Ozaki∗, Gaku Morio*, †Yuta Koreeda, Terufumi Morishita and Toshinori Miyoshi
Research and Development Group, Hitachi, Ltd., Japan

†Research and Development Group, Hitachi America, Ltd., USA
{hiroaki.ozaki.yu, gaku.morio.vn, terufumi.morishita.wp,

toshinori.miyoshi.pd}@hitachi.com, †yuta.koreeda@hal.hitachi.com

Abstract

This paper presents our proposed parser for the
shared task on Meaning Representation Pars-
ing (MRP 2020) at CoNLL, where participant
systems were required to parse five types of
graphs in different languages. We propose to
unify these tasks as a text-to-graph-notation
transduction in which we convert an input text
into a graph notation. To this end, we de-
signed a novel Plain Graph Notation (PGN)
that handles various graphs universally. Then,
our parser predicts a PGN-based sequence
by leveraging Transformers and biaffine atten-
tions. Notably, our parser can handle any
PGN-formatted graphs with fewer framework-
specific modifications. As a result, ensemble
versions of the parser tied for 1st place in both
cross-framework and cross-lingual tracks.

1 Introduction

This paper introduces the proposed parser of
the Hitachi team for the CoNLL 2020 Cross-
Framework Meaning Representation Parsing (MRP
2020) shared task (Oepen et al., 2020). Different
from the previous MRP 2019 shared task (Oepen
et al., 2019), there are two tracks. The first is a
cross-framework track that aims at parsing English
sentences to five different meaning representation
graphs, i.e., EDS (Oepen and Lønning, 2006), PTG
(Hajič et al., 2012), UCCA (Abend and Rappoport,
2013; Hershcovich et al., 2017), AMR (Banarescu
et al., 2013), and DRG (Van Der Sandt, 1992; Bos
et al., 2017). The other is a cross-lingual track
that targets four different frameworks and three lan-
guages, i.e., German UCCA and DRG, Chinese
AMR (Li et al., 2016), and Czech PTG. In both
tracks, the goal was to design a unified parser for
all graphs.

∗ Contributed equally. Ozaki mainly developed PGN
parser. Morio mainly developed neural models.

1/take-10
2/it ARG0 [EOD]
3/long-03

2/it ARG1 [EOD]
4/- polarity [EOD]

ARG1 [EOD]
[EOG]

It did n't take long .Input text

Plain Graph
Notation

(PGN)

decode & reconstruct

output graph

equals

encode

Model

(Transformer-based

encoder-decoder)

Figure 1: Given an input text, we tokenize and en-
code the text by pre-trained Transformer encoder (e.g.,
BERT). Then, Transformer decoder is applied to pro-
duce a Plain Graph Notation (PGN) that is convertible
into a general graph.

In this paper, we propose a novel parser to unify
graph predictions across all frameworks and lan-
guages. To this end, we introduce a text-to-graph-
notation transduction. The overview of our parser
is shown in Figure 1. Our parser utilizes sequence-
to-sequence Transformer architectures (Vaswani
et al., 2017) to generate a plain graph notation
(PGN), which we newly designed as a context-
free language. PGN is a simplified notation based
on the PENMAN notation (Matthiessen and Bate-
man, 1991) that is generally used for AMR graphs.
However, PGN is tailored for direct generation by
sequence-to-sequence architecture.

Our parser is expected to combine both strengths
of the neural graph-based and transition-based
parsers (McDonald et al., 2005; Yamada and Mat-
sumoto, 2003; Kulmizev et al., 2019; Ma et al.,
2018). This is because the Transformer decoder
directly draws attentions like a graph-based parser
does, as well as handles higher-level effects of
graph structures by sequence prediction like a
transition-based parser does. Moreover, our parser
is practically able to parse most of the graph vari-

41

ants in a unified manner. For example, our parser
is able to predict directed acyclic graphs, discon-
nected graphs, directed multigraphs, reentrancy
edges (Vilares and Gómez-Rodrı́guez, 2018), and
source-side anchors without complicated language-
dependent architectures.

Consequently, ensemble versions of our parser
officially tied for 1st place in both the cross-
framework track and cross-lingual track, achieving
the top performances for English EDS, PTG, and
AMR graphs. We also summarize other contribu-
tions as follows:
Alignment Free: PGN generation allows us to
achieve completely alignment-free parsing.
Action Design Free: Compared to a transition-
based parser, there is no need to design a complex
transition strategy.
Fast Training: Since we leverage attentions, train
speed is faster than a transition-based parser.

2 Related Work

2.1 Previous Systems for Cross-Framework
Meaning Representation Parsing

MRP 2019 (Oepen et al., 2019) brought various
parsing techniques together. According to Oepen
et al. (2019), MRP systems can be characterized
into three broad families of approaches: transition-,
factorization-, or composition-based architectures.
For example, the winning technique of HIT-SCIR
(Che et al., 2019) at MRP 2019 used a transition-
based parser based on a BERT encoder (Devlin
et al., 2019). SUDA-Alibaba (Zhang et al., 2019c)
proposed a graph-based approach with BERT. They
used biaffine attention (Dozat and Manning, 2018)
for the edge prediction. Donatelli et al. (2019)
employed a compositional approach that represents
each graph with its compositional tree structure
(Lindemann et al., 2019).

2.2 Comparison with Other Systems

Like Zhang et al. (2019a), we model a context-free
language instead of a sequence of transition actions,
and parser states can be regarded as being implicitly
materialized inside BERT’s memory. However,
our parser jointly generates nodes and edges based
on PGN, making the system consider higher-level
effects of graph structures.

The work most closely related to our study is
(Zhang et al., 2019b), where the authors provided
an encoder-decoder architecture to predict a se-
quence of semantic relations, employing a target

graph = {target “[EOG]”};
edge = node id {dep ”[EOD]”};
dep = target edge label;
target = node id | edge;
node id = {digit};
edge label = {letter};

Figure 2: PGN grammar described in EBNF. Essen-
tially, a graph can be represented by a set of edges.
However, to support floating nodes, we defined a graph
as a set of edges and floating nodes.

Name Function
attr2name Append -{attr name} suffix to edge

label name instead of having attributes.
prop2node Make node properties independent

nodes linked with edges named with
properties’ names.

embed label Replace node id in PGN with
{node id}/{node label}.

Table 1: List of PGN processors.

node-, relation type-, and source node-module in
the decoder. Similar to our study, Zhang et al.
(2019b) encoded node and edge representation with
the modules. While they jointly predicted node and
edge labels, our parser outputs node and edge la-
bels separately. In addition, they provided LSTMs
whereas we provide Transformers that can draw
attentions from both past node and edge represen-
tations in the decoder. Also, while Zhang et al.
(2019b) solved reentrancies by producing the same
node ID, we solve them with a biaffine classifier,
making our parser solve reentrancies with atten-
tions.

The biggest difference between the transition-
based architectures for MRP (Che et al., 2019)
and our work is that we have designed PGN such
that it unifies all graph generation processes and
eliminates the need to design framework-specific
actions. In addition, Che et al. (2019) relied on
explicit alignment between input tokens and nodes,
whereas our model utilizes biaffine attention for
anchoring only when it is necessary, allowing our
model to be alignment-free.

3 Plain Graph Notation

3.1 Format Design

To represent a graph as a text sequence, we newly
designed a notation, called Plain Graph Notation
(PGN), with the key principles shown below.
Simpler Format: Similar to PENMAN notation
(Matthiessen and Bateman, 1991; Goodman, 2020),
which is used to represent AMR graphs with text
sequence, PGN is based on a context-free grammar.

42

_may_v_modal
may

TENSE pres

_sell_v_1
sold

ARG1

udef_q
Jackets

_jacket_n_1
Jackets
NUM pl

BVARG2

_next_a_1
next.

ARG1

3/ may v modal
6/pres TENSE [EOD]
4/ sell v 1

5/ next a 1 ARG1-of [EOD]
2/ jacket n 1

7/pl NUM [EOD]
1/udef q BV-of [EOD]

ARG2 [EOD]
ARG1 [EOD]

[EOG]

(a2) PGN

<bos> [AS] [AE] may v modal [EON]
pres [EON] TENSE [EOD]
[AS] [AE] sell v 1 [EON]
[AS] [AE] next a 1 [EON] ARG1-of [EOD]
[AS] [AE] jacket n 1 [EON]

pl [EON] NUM [EOD]
udef q [EON] BV-of [EOD]

ARG2 [EOD]
ARG1 [EOD]

[EOG] <eos>

(a3) Prediction sequence

(a) An EDS graph and its PGN and prediction sequence for Jackets may be sold next

take-10

long-03
polarity -

ARG1

it

ARG0

ARG1

1/take-10
2/it ARG0 [EOD]
3/long-03

2/it ARG1 [EOD]
4/- polarity [EOD]

ARG1 [EOD]
[EOG]

(b2) PGN

<bos> take - 10 [EON]
it [EON] ARG0 [EOD]
long - 03 [EON]
[RNT] [EON] ARG1 [EOD]
- [EON] polarity [EOD]

ARG1 [EOD]
[EOG] <eos>

(b3) Prediction sequence

(b) An AMR graph and its PGN and prediction sequence for it didn’t take long.

Figure 3: MRP graph examples and their PGN and prediction formatted expressions. We applied prop2node
and embed label processors to generate the PGN expressions.

However, PGN only represents a graph structure
(namely, all edges in the graph) for simplicity. All
node properties are omitted from PGN while we
preserve the properties separately. In addition, we
reduce redundant meta-tokens appearing in the no-
tation as much as possible. Figure 2 shows the
Extended Backus–Naur Form (EBNF)1 of PGN
grammar.

Tree-Like Structure: We employed an essentially
tree-like structure2 because all spanning graphs
with a root can be converted into tree-like struc-
tures by flipping the directions of appropriate edges.
This structure is useful when we convert graphs to
PGN.

Left-to-Right Decodable: To make our parser ro-
bust, we allow it to convert a notation into a graph
in a left-to-right manner. This operation makes us
decode an ill-formatted sequence with a best-effort
strategy. We briefly explain this algorithm in a later
sub-section.

1https://www.iso.org/obp/ui/#iso:std:
iso-iec:14977:ed-1:v1:en

2Here we define “tree-like” graph as a graph whose root
node is always an ancestor of all nodes in the graph.

3.2 Graph to PGN Conversion

MRP graph to PGN conversion starts with the top
nodes. We recursively apply the grammar shown
in Figure 2 from parents to children by depth first
search. In addition to the depth first search, at
finding a next path, we select a child node in in-
creasing order of the numbers of outgoing edges in
all descendant nodes (i.e., we select shallow branch
first) to convert. Since we assume the input graph
consists of a tree-like structure, finding children is
just extracting out-going edges. However, several
frameworks such as EDS, DRG, and AMR may
not form a tree-like structure. Thus, we provide an
option using all edges instead of out-going edges
with flipping edge directions of in-coming edges
(we append “-of” suffix to labels of flipped edges).
To deal with the reentrancy problem, our recursive
search is applied when the node first appears. Here
we describe various framework-specific modifica-
tions.
Floating Nodes: We found that some EDS and
AMR graphs have floating nodes in which no in-
coming or outgoing edges are annotated. Thus, the
PGN grammar supports floating nodes.
Floating Sub-Graphs: We found that some EDS
graphs have floating sub-graphs that have no con-

https://www.iso.org/obp/ui/#iso:std:iso-iec:14977:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:14977:ed-1:v1:en

43

nection to the top. Therefore, we add temporal top
nodes for floating sub-graphs to convert all sub-
graphs on the basis of the following criteria.

1. First predicate node that has frame property,
with the first priority.

2. First node that has smallest ID in a sub-graph,
with the second priority.

3.3 Left-to-Right Decoding
This left-to-right decoding system consists of a
stack and an input stream. Every time a token is
fed from the input stream, we take an action of
ADD (put the token to the stack), ARC (create an
edge between the top two tokens on the stack), POP
(pop out the top token from the stack), or CLEAR
(pop out all tokens in the stack, and add them to the
node list). These actions correspond to node id,
edge label, [EOD], and [EOG] in Figure 2,
respectively.

Since neural networks may produce ill-formatted
PGN, the left-to-right decoding finds as many
edges as possible.3 If there is an ill-formatted ac-
tion such that a PGN sequence terminates with a
non-empty stack, we generate additional edges ac-
cording to the stack state.

3.4 PGN Processors
We define PGN processors, which are a set of in-
vertible functions to apply small modification PGN
formatted sequences. Table 1 shows all PGN pro-
cessors and their description. To better understand
these processors, Figure 3 (a2 and b2) shows ex-
ample PGN formatted graphs of EDS and AMR.
Actual PGN expressions are a list of serialized to-
kens, but here we add indentations for ease of read-
ing. According to the PGN grammar, a node id
should be digits representing a node ID, but we
insert node labels by the embed label processor.
In Figure 3 (a2), there are two flipped edges in the
graph to form a tree-like structure, i.e., (next a 1,
sell v 1, ARG1) and (udef q, jacket n 1, BV).

Also, Figure 3 (a2 and b2) depicts a larger number
of nodes than that in original MRP graphs because
node properties are converted into additional nodes
by prop2node processor, e.g., 6/pres and 7/pl in
the EDS graph.

3.5 PGN to Prediction Sequence
Though existing text generation techniques are ap-
plicable to generate PGN as is, we provide further

3In practice, ill-formatted outputs were very few in experi-
ments.

modification for PGN expressions to obtain more
suitable prediction sequences for a neural decoder.
Figure 3 (a3 and b3) shows example prediction se-
quences derived from PGN. As can be seen, we
split a node label into multiple tokens (e.g., sub-
word tokens) and add some special tokens. We add
an end-of-node token ([EON]) just after the end of
subword elements because we should know where
the node label token generation terminates. Since
[EON] is inserted as the end of node token, we
can consider [EON] as the node’s representative
token, which will be used for reentrancy classifiers
and property classifiers (described later). To handle
anchors, we add a place-holder token for anchor
starting and ending ([AS] and [AE]) before node
label tokens. When our parser predicts [AS] and
[AE] tokens, we resolve anchors by a biaffine clas-
sifier described later. We also add a place-holder
token ([RNT]) to generate a reentrancy edge after
all decoding steps have been completed.

4 Model

4.1 Problem Formalization

We describe the conceptual formalization sim-
ilarly to the work of Zhang et al. (2019b).
Given an input sequence X (i.e., tokens in the
text), we optimize an output sequence Ŷ =
〈y1, y2, . . . yn〉, where y can be represented by a
tuple

〈
ymode, yG, yE, yL, yAS, yAE

〉
,4 consisting of

a model label (ymode), mode-wise labels (yG, yE

and yL), and an index of a source-side token for
anchoring (yAS and yAE), defined as follows:

Ŷ = arg max
Y

n∏
i

P(yi | y<i, X).

4.2 Overview

To generate the prediction sequence, we provide a
sequence-to-sequence model. Figure 4 illustrates
an example of AMR parsing (i.e., the graph of
Figure 3 (b3)). Our parser is based on a typical
encoder-decoder architecture but has several pro-
posed architectures on the decoder side. Given
an input text, our parser encodes the tokens by a
pre-trained language model (PLM) such as BERT
(Devlin et al., 2019). At decoding, a Transformer
decoder produces the prediction sequence. To ef-
fectively control the decoder, we propose a mode
switching mechanism. At the i-th decode step, our

4We omit reentrancy and property outputs for simplicity.

44

G L L L G L G E G L L L G R G E

take - 10 it long - 03

<bos> [EON] [EON] [EOD] [EON] [EON]

ARG0 ARG1Input tokens

BERT encoder

Mode embed

Label embed

Edge embed

Graph embed

Mode classifier

Label classifier

Edge classifier

Graph classifier

Generate a token mask
for each classifier

Reentrancy classifier
Biaffine scoring

[CLS] It did n't take long . [SEP]

Depth embed 0 0 0 0 1 1 2 2 1 1 1 1 2 2 3 3

L L L G L G E G L L L G R G E G

[EON] [EON] [EOD] [EON] [EON] [EOD]

ARG0 ARG1

take - 10 it long - 03

Transformer decoder

Source-side repr.

G: graph meta
L: node label
E: edge label
R: reentrancy

Modes

<bos>: beginning of the sentence
<eos>: end of the sentence
[EON]: end of node
[EOD]: end of dependency
[EOG]: end of graph

Graph meta-tokens

Figure 4: Overview of our proposed parser, showing an example of AMR parsing, assuming PLM = BERT. We
encode input tokens that are fed into the decoder. In the decoder, each mode is embedded and the decoder produces
an output label for each classifier.

parser decides which mode to execute amongst the
following six modes:
G (graph) generates the meta tokens: <bos>,
<eos>, [EON], [EOD], and [EOG].
L (label) generates label tokens of a node, such as
take - 10.
E (edge) generates an edge label such as ARG0.
AS (anchor start) produces an anchoring start rep-
resentation corresponding to [AS].
AE (anchor end) produces an anchoring end rep-
resentation corresponding to [AE].
R (reentrancy) generates a place-holder token
[RNT] that is solved after all decoding steps have
been completed.

Then, a classification layer of the selected mode
is applied to predict the i-th output. For example,
if mode E is selected, an edge classifier on the de-
coder is used to produce an edge label. If mode AS
is selected, an anchoring classifier on the decoder
is used to produce an anchor starting index in the
encoder’s subword tokens. If mode R is selected,
we do nothing but generate a place-holder token.
Instead, after all decoding steps, we apply biaffine
attention, which solves the reentrancy edges for the
place-holder tokens.

4.3 Encoder
Given an input text, a PLM-specific tokenizer to-
kenizes the text into the token sequence X . Note
that we insert special tokens such as [CLS] and
[SEP] according to the PLM type. To obtain PLM
representations, a layer-wise attention is applied
(Kondratyuk and Straka, 2019; Peters et al., 2018):

hPLM,i = c
∑
j

PLMij · softmax (s)j ,

where s and c are parameters. Note that hPLM,i ∈
Rd(PLM), where d(PLM) represents the number of
dimensions of the PLM layers. PLMij is an embed-
ding of the i-th token in the j-th PLM layer. Note
that 1 ≤ i ≤ N , where N is the number of tokens.

4.4 Decoder
We employ a Transformer decoder to fully utilize
a self-attention mechanism. The decoder includes
a switching architecture of modes that makes the
decoder explicitly learn structural representations.
Decoder Input Representation: For each decod-
ing step i, we compute an input representation for
the Transformer decoder:

ei =
[
emode
i ; eG

i ; e
L
i ; e

E
i ; e

AS
i ; eAE

i ; e
depth
i

]
,

45

where ; shows a concatenate operation, and each
representation is obtained as follows:

emode
i = EMB(mode) (ymode

i

)
,

eG
i = EMB(G)

(
yG
i

)
,

eE
i = EMB(E) (yE

i

)
,

eL
i = EMB(L) (yL

i

)
,

eAS
i =W (AS)hPLM,k + b(AS),

eAE
i =W (AE)hPLM,k + b(AE),

e
depth
i = EMB(depth)

(
y

depth
i

)
,

where EMB is a layer that transfers the label into
a fixed sized vector, and W and b are parameters.
The following shows detailed descriptions.

• emode
i : This is a representation of the current

mode label. ymode
i ∈ {G,E,L,AS,AE,R}

denotes the mode label.
• eG

i , e
E
i , e

L
i : These are representations of a

graph meta-token, edge label, and node label,
respectively. In turn, yG

i , yE
i , and yL

i represent
a mode-wise label. For example, yG

i ∈
{<bos>,<eos>,[EON],[EOD],[EOG]}.
yE
i ∈ {ARG0,ARG1, . . . } when the target

framework is AMR. Note that G, E, and L
are selected exclusively and thus zero embed-
dings are assigned for non-selected modes:
for example, if ymode

i is E, eG
i = eL

i = 0.
• eAS

i , eAE
i : These are input embedding of

source-side anchors. W (AS),W (AE) ∈
Rd(PLM)×d(PLM) and b(AS),b(AE) ∈ Rd(PLM)

are trainable parameters. k is an index of the
anchor starting token for AS, or an index of
the anchor ending token for AE. Therefore,
the Transformer decoder draws attentions
from the encoder representation of source-side
anchored tokens. Note that AS and AE are
also exclusive.

• e
depth
i : This is a feature embedding to make

the network consider the current depth from
the top of the graph. The depth ydepth

i is ob-
tained by starting from zero, adding one when
[EON] appears, and subtracting one when
[EOD] appears (see Figure 4).

Transformer Decoder: To leverage self-attentions
throughout parsing, a multi-layered Transformer
decoder (Vaswani et al., 2017) is applied to ob-
tain an output sequence. Let di be a decoder
representation at i-th step that is obtained by a
multi-layered Transformer decoder where previ-
ous decoder inputs (e1 . . . ei) and encoder repre-

G AS AE L L L

_ may _

<bos>
Input tokens

Mode classifier

Label classifier

[CLS] Jackets may be sold next . [SEP]

0 0 0 0 0 0

AS AE L L L L

_ may _ v

Transformer decoder

anchor
classifier

Biaffine scoring

Biaffine scoring

BERT encoder

anchor
classifier

AS: anchor start
AE: anchor end

Figure 5: Overview of our proposed parser, showing an
example EDS parsing with anchoring prediction.

sentations (hPLM,1 . . .hPLM,N) are given. We also
apply position-encoding (Sukhbaatar et al., 2015;
Vaswani et al., 2017; Devlin et al., 2019) for the
decoder input representation. By leveraging this
decoder, we can consider the entire encoder rep-
resentation and all decoder inputs throughout the
decoding steps.
Mode Output Layers: Given the decoder repre-
sentation di, we produce a probability distribution
of the next mode label with a softmax classifier and
a feed forward network as follows:

P
(
ymode
i+1

)
= CLS(mode) (di) ,

where

CLS(t)(x) = softmax
(
W (t)FFN(t) (x) + b(t)

)
.

In the equation, ymode
i+1 denotes a mode label, i.e., G,

E, L, AS, AE, or R. We chose the mode ymode
i+1 based

on the maximum probability. Similarly, we obtain
a probability distribution for each mode-wise label
as follows:

P
(
yG
i+1

)
= CLS(G) (di) ,

P
(
yE
i+1

)
= CLS(E) (di) ,

P
(
yL
i+1

)
= CLS(L) (di) ,

After applying these layers above, we obtain
output labels ymode

i+1 , yG
i+1, yE

i+1, yL
i+1, and their cor-

responding embeddings emode
i+1 , eG

i+1, eE
i+1, eL

i+1,
which are used for the next decoder input.

46

Anchoring Classifier: To compute source-side an-
chors (i.e., AS and AE), we employ biaffine at-
tention (Dozat and Manning, 2017, 2018). The
biaffine operation computes a relation for vector
pairs as:

BIAFFINE(t)(x,y) =x>U(t)y+W (t)[x;y] +b(t),

where U(t), W (t), and b(t) are trainable param-
eters. We apply the biaffine operation between
the decoder representation di and encoder repre-
sentation hPLM,j to point a range of anchoring. If
ymode
i+1 = AS, the anchor starting probability can be

represented as

h
(A1)
i = FFN(A1) (di) ,

h
(A2)
j = FFN(A2) (hPLM,j) ,

P
(
yAS
i→j

)
= σ

(
BIAFFINE(A)

(
h
(A1)
i ,h

(A2)
j

))
,

where σ is a sigmoid function. P
(
yAS
i→j

)
repre-

sents a probability that the j-th token in the en-
coder is an anchor starting token. After the output
layer above, we draw encoder representations by
selecting arg max

j∈1,...,N
P
(
yAS
i→j

)
and its corresponding

hPLM,j , which is used as the next decoder input
eAS
i+1. Also, eAE

i+1 can be calculated in the same
manner.

Figure 5 shows an example of EDS parsing (the
graph of Figure 3 (a3)). This example illustrates
that AS is raised at the first decoding step, applying
biaffine scoring and selecting the encoder’s repre-
sentation of may token. Similarly, the AE is raised
at the second step.
Reentrancy Classifier: To solve reentrancy edges,
we provide another biaffine layer. Given that this
is a target-side (i.e., decoder-side) operation, we
apply this classifier after all decoding steps have
been finished to keep the training speed fast. If
ymode
i+1 = R, the probability that a reentrancy edge

exists between the i and j-th decoding steps can be
represented as

h
(R1)
i = FFN(R1) (di) ,

h
(R2)
j = FFN(R2) (dj) ,

P
(
yR
i→j

)
= σ

(
BIAFFINE(R)

(
h
(R1)
i ,h

(R2)
j

))
.

To restrict the search space, we only consider the
end of node token (i.e., [EON]) for j (see Figure 4),
since we assume [EON] is a representative token
of the node.

Property Classifiers: Since we need to classify
the properties of a node for PTG graphs, we pro-
vide property classifiers on the top of the decoder.
Given that we consider [EON] as a representative
token of a node, we use decoder representations of
[EON] tokens to classify properties. Therefore, if
yG
i+1 = [EON], a probability distribution for the

property is computed as

P
(
yPi+1

)
= CLS(P) (di) ,

where P
(
yPi+1

)
represents a probability distribution

of the label of property type P at the [EON] (i.e.,
a node representative token). Note that P contains
a no label class where the node is considered to not
have the property.

4.5 Loss and Decoding

Loss: We compute a mode output cross-entropy
loss Lmode based on P

(
ymode

)
. For each mode, we

compute mode-specific cross-entropy loss LG, LL,
and LE based on P

(
yG
)
, P
(
yL
)
, and P

(
yE
)
. Note

that loss is not computed if a different mode is
selected for decode step i. For example, if ymode

i =
G, only LG is computed, and others are ignored
except the mode loss. Anchoring loss LAS and
LAE are computed based on binary cross-entropy
of the P

(
yAS
)

and P
(
yAE
)
. Similarly, reentrancy

loss is represented as LR. If the graph has property
tasks (e.g., PTG graphs), we compute the cross-
entropy of property label LP for property type P .
The following equation describes the combined
loss to be optimized:

L = λmodeLmode + λGLG + λELE + λLLL

+ λALAS + λALAE + λRLR + λP
∑
P
LP .

where λ are hyperparameters to adjust loss scales.
Decoding: For simplicity, we only consider greedy
decoding. We also apply explicit restrictions. For
example, the mode AE always comes after AS.

4.6 Ensemble

To further boost the performance of our parser, we
provide an average ensemble. We apply mode-wise
averaging over output probabilities. Therefore, we
average probabilities for the mode layer, mode-
specific layers, anchoring classifiers, reentrancy
classifier, and property classifiers, respectively.

47

Cross-framework Cross-lingual
AMR EDS UCCA PTG DRG PTG UCCA AMR DRG

Data preparation
No. of folds 36 24 12 52 16 52 12 16 8
Reverse edge X X X
prop2node X X X
embed label X X X X X X X
attr2name X X X X
Hyperparameters

Hugging Face PLM roberta
-large

roberta
-large

roberta
-large

roberta
-large

roberta
-large

bert-base-
ml-cased

bert-base-
ml-cased

chinese-roberta
-wwm-ext-large

bert-base-
ml-cased

Encoder dropout .1 .1 .1 .1 .1 .1 .1 .1 .1
FFN dropout .1 .1 .1 .1 .1 .1 .1 .1 .1
FFN activation ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU
BIAFFINE dim 400 400 400 400 400 400 400 400 400
Decoder layer, head 6, 4 6, 4 6, 4 6, 4 6, 4 6, 4 8, 4 6, 4 8 ,4
Decoder dff 256 256 256 256 256 256 256 256 256
Decoder dropout .1 .1 .1 .1 .1 .1 .1 .1 .1
Depth embedding dim 100 100 100 100 100 100 100 100 100
λmode 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
λG .137 1.0 .06 .459 .85 .45 .162 .15 .058
λE .137 1.7 .09 .329 .25 .35 .058 .15 .613
λL 1.2 1.4 0 1.50 .4 1.5 0 1.5 .538
λA 0 2.0 1.73 2.0 0 2.0 2.96 3.0 0
λR 3.1 1.0 .50 1.5 2.0 1.5 .241 3.0 .885
λP 0 0 0 1.6 0 1.6 0 0 0
Encoder learning rate 1.4e-5 1e-5 1e-5 1e-5 5e-5 5e-5 1.6e-5 5e-6 5.4e-6
Decoder learning rate 5.4e-5 5e-5 5e-5 5e-5 1e-4 1e-4 1.2e-4 1e-4 8.0e-5
Adam beta1, 2 .9,.998 .9,.998 .9,.998 .9,.998 .9,.998 .9,.998 .9,.998 .9,.998 .9,.998
Warmup ratio .01 .01 .01 .05 .05 .05 .05 .01 .05
Batch size 8 12 8 8 4 4 16 8 32
Maximum epochs 500 500 1000 500 500 500 1000 500 1000
CV ensemble X X X X X X X X X

Table 2: Experimental setup of submitted models: data preparation (top) and hyperparameter values (bottom).

4.7 Post-Processing

We incorporate framework-specific post-processing
after reconstruction except for DRG.

For EDS, to support unknown words appearing
as a named entity, we replace the CARG property
with a node label expression extracted by anchors
when the edit distance between node label expres-
sion and CARG is larger than 70% of the node la-
bel characters. Since the EDS frame dictionary
is available5, we correct frames by checking their
arguments. When several candidates are available,
we select the most frequent frame name.

For PTG, frame dictionaries for both English
and Czech are also available6, so we correct frames
in the same manner.

For UCCA, we apply post-processing to fol-
low UCCA restrictions. We remove non-anchored
nodes appearing as terminal nodes. We also re-
move self-loop edges. We add remote attribute
to all edges except primary edges.

For AMR, we replace date-entity and

5http://svn.delph-in.net/erg/tags/
1214/etc

6http://hdl.handle.net/11234/1-1512

url-entity with an extracted date and URL
from the input by using regular expressions.

5 Experiments

Data Preparation: We first converted all MRP
formatted training data into PGN format. Ta-
ble 2 (top) summarizes the PGN conversion pa-
rameters. Since PTG and UCCA utilize tree-like
structures, we did not use the reverse edge option,
which flips edge directions to form a tree-like struc-
ture. AMR graphs form essentially non-tree-like
structures; however, given MRP data have been
converted to tree-like structures, we did not ap-
ply the reverse edge option to AMR graphs. We
used attr2name on all graphs that have edge at-
tributes (i.e., PTG and UCCA). We also applied
prop2node to all graphs that have node proper-
ties, except PTG graphs.

We divided training data into folds to apply cross-
validation (CV) (see No. of folds in Table 2 (top)).
We decided a fold size should have about a half
number of graphs in the official validation data.
Implementation: We utilize BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) models as

http://svn.delph-in.net/erg/tags/1214/etc
http://svn.delph-in.net/erg/tags/1214/etc
http://hdl.handle.net/11234/1-1512

48

Team Mean EDS PTG UCCA AMR DRG
Hitachi (ours) .8642 /1 .9356 /1 .8873 /1 .7507 /2 .8154 /1 .9319 /2
ÚFAL (Samuel and Straka, 2020) .8639 /1 .9273 /2 .8844 /2 .7640 /1 .8023 /2 .9416 /1
HIT-SCIR (Dou et al., 2020) .8106 /3 .8740 /3 .8426 /3 .7476 /3 .6980 /3 .8907 /3
HUJI-KU (Arviv et al., 2020) .6429 /4 .7968 /5 .5376 /4 .7291 /4 .5236 /5 .6275 /5
ISCAS .4813 /5 .8586 /4 .1799 /6 .0599 /6 .6148 /4 .6935 /4
TJU-BLCU .3016 /6 .4904 /6 .2149 /5 .1041 /5 .2996 /6 .3991 /6
JBNU (Na and Min, 2020) .1323 /- - - - .6613 /- -

Table 3: Official MRP results for the cross-framework track (shown as score /rank).

Team Mean Czech PTG German UCCA Chinese AMR German DRG
Hitachi (ours) .8505 /1 .8735 /2 .7904 /3 .8044 /1 .9336 /1
ÚFAL (Samuel and Straka, 2020) .8507 /1 .9127 /1 .8101 /1 .7817 /2 .8983 /2
HIT-SCIR (Dou et al., 2020) .6891 /3 .7793 /3 .8002 /2 .4939 /3 .6831 /3
HUJI-KU (Arviv et al., 2020) .6011 /4 .5849 /4 .7472 /4 .4492 /4 .6233 /4
ISCAS - - - - -
TJU-BLCU .2003 /5 .2171 /5 .0000 /5 .2464 /5 .3377 /5
JBNU (Na and Min, 2020) - - - - -

Table 4: Official MRP results for the cross-lingual track (shown as score /rank).

PLMs from Hugging Face’s Transformer library
(Wolf et al., 2019), which is included on the of-
ficial ‘white-list’ of legitimate resources in MRP
2020. RoBERTa large model is used for the cross-
framework track because we found in our prelim-
inary experiments that this model generally per-
forms better. In the cross-lingual track, we utilize
multi-lingual BERT (Devlin et al., 2019) except
for Chinese AMR. Chinese RoBERTa (Cui et al.,
2020) is used for the Chinese AMR graphs because
the model is carefully tuned for Chinese.

At training, we split network parameters into
two groups: one for the encoder and the other
for all decoder parameters, applying discriminative
fine-tuning (Kondratyuk and Straka, 2019). Each
group-specific learning rate is provided and is tuned
discriminatively. We select models by evaluating
MRP scores on CV and official validation data.

Input texts are tokenized by the PLM-specific
tokenizer. We utilized the tokenization scheme of
the tokenizer for our decoder: we use the same
vocabulary for the node labels yL

i when decoding.
The only exception is Czech PTG because node
label tokens in Czech PTG graphs include accents
that are removed from the vocabulary of multi-
lingual BERT. Thus, we employ character-level
decoding for Czech PTG, where the vocabulary
was constructed to contain Czech characters.
Hyperparameters: Hyperparameters of the sub-
mitted models are shown in Table 2 (bottom).
Adam (Kingma and Ba, 2015) was used as an op-
timizer, applying linear warmup scheduling. We
preliminarily tuned hyperparameters for learning
rates, the number of decoder layers, the number of

decoder heads, and λ values.
Search ranges of hyperparameters were

[1e-6, 1e-3] with log-uniform sampling for decoder
learning rate, [1e-6, 1e-4] with log-uniform
sampling for encoder learning rate, [4, 8] for Trans-
former layers and heads, and [0, 2] with uniform
sampling for λ. We fixed λmode = 1. In terms of
hidden dimensions, we did not aggressively tune
them because we preliminarily found their impact
on the final performance to be minuscule. In this
work, we fixed the biaffine dimensions to 400 and
the depth embedding dimensions to 100.
Validation: We used CV to validate our models
to ensure robustness. We picked four folds from
the training data in Table 2 for each framework/lan-
guage.7 For example, although we split the EDS
training data into 24 folds, we only used four of
these folds to validate the EDS model. We mixed
official validation data with each fold to evaluate
the model’s performance. Then, validation perfor-
mance was evaluated every 20 epochs, selecting
the best model.

Through this validation, we obtained four (i.e.,
the number of CV folds) trained models for each
framework/language with the same hyperparame-
ters. The obtained models were then utilized for
the average ensemble.
Setup for Cross-Lingual Pre-Training: Given
the lower resource nature of the cross-lingual
track, especially for the German UCCA and DRG
graphs, we provided two-staged cross-lingual train-
ing. First, we concatenated the cross-framework
(CF) (e.g., English DRG) and cross-lingual (CL)

7This was done to save the computation time.

49

EDS PTG UCCA AMR DRG
roberta-large .9101 .8779 .7692 .7776 .9080
bert-base-cased .8964 .8589 .7473 .7634 .8675

Table 5: Comparison of MRP all-F scores between
BERT base and RoBERTa large versions. Scores were
evaluated with CV with no ensemble.

(e.g., German DRG) training data. Then, we ap-
plied pre-training on the concatenated data for each
framework with multi-lingual BERT (Devlin et al.,
2019). After that, we applied fine-tuning on only
monolingual training data.

5.1 Results and Discussion

Overall Result: Table 3 shows the official cross-
framework evaluation results in MRP metrics. As
can be seen in the table, in terms of average MRP
scores, our parser tied for 1st place: results were
very close to the ÚFAL system (Samuel and Straka,
2020).8 We achieved the top performances on
EDS, PTG, and AMR, demonstrating the efficiency
for these frameworks. Table 4, the official cross-
lingual evaluation results, shows a similar tendency.
In the cross-lingual track, we achieved a tie for
1st place, obtaining the best performance for Chi-
nese AMR and German DRG. Notably, our parser
performed well on flavor 2 graphs (Oepen et al.,
2019) such as AMR and DRG, where no anchors
exist in the graphs. This is because we generate
node labels directly by the Transformer decoder,
thus avoiding alignment errors. However, anchor-
based graphs such as UCCA seem unsuitable for
our parser when compared to the ÚFAL system.
We presume that improving the biaffine scoring in
anchoring classifiers would remedy this problem.
Comparing Pre-Trained Models: To better un-
derstand how we benefit from PLMs, we compare
the bert-base-cased and roberta-large
models. Table 5 shows MRP all-F scores of the
cross-framework results. Note that the hyperpa-
rameters were slightly different for each model.
RoBERTa large models were better than BERT
small models, showing improvements ranging from
one to four points.
Effectiveness of Depth Embeddings: We con-
duct an ablation study to examine the role of depth
embedding. Table 6 shows a CV-averaged result
on English DRG graphs. Note that the hyperparam-
eters are different from Table 5. The result shows

8Given randomness nature of the official evaluation tool
and statistical significance concerns, system ranking was con-
sidered with rounded scores.

Label Edge All
w/ depth embedding .8661 .9200 .9011
w/o depth embedding .8611 .9138 .8952

Table 6: Ablation study of depth embedding for DRG’s
MRP metrics with CV results with no ensemble. We
used BERT base in this run.

Language & Framework Edge All
German UCCA

w/ cross-lingual pre-training .6942 .7791
w/o cross-lingual pre-training .6123 .6938

German DRG
w/ cross-lingual pre-training .9479 .9044
w/o cross-lingual pre-training .9005 .8543

Table 7: Comparison of MRP scores between cross-
lingual training and monolingual training. Scores were
evaluated through CV by micro-averaging.

that our depth embedding is effective to boost per-
formance. We presume this is because the decoder
considers a kind of stack state in PGN, which helps
the parser easily produce valid graphs.
Effectiveness of Cross-Lingual Pre-Training:
Table 7 shows a comparison of F scores
between CL and monolingual training.
We used bert-base-german instead of
bert-base-ml-cased for both monolingual
trainings. CL training outperformed monolingual
training. This indicates that both UCCA and DRG
annotations are cross-lingually consistent, and our
model can capture the consistency through the CL
training. We estimate that our parser has a better
transfer ability on cross-lingual graphs.

6 Conclusion

This paper described a novel parser for the shared
task on Meaning Representation Parsing 2020. We
proposed a text-to-graph-notation transduction that
provides a novel graph notation. Our model ef-
fectively parsed the graph-notation. Experimental
results showed that our parser achieved the top per-
formances in many frameworks. Since our parser
is not limited to the five frameworks, in future work
we will extend our technique for other tasks.

Acknowledgments

Computational resource of AI Bridging Cloud In-
frastructure (ABCI) provided by the National Insti-
tute of Advanced Industrial Science and Technol-
ogy (AIST) was used. We would like to thank the
anonymous reviewers for their helpful comments.
We also thank Dr. Masaaki Shimizu for the conve-
nience of the computational resources.

50

References
Omri Abend and Ari Rappoport. 2013. Universal con-

ceptual cognitive annotation (UCCA). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics.

Ofir Arviv, Ruixiang Cui, and Daniel Hershcovich.
2020. HUJI-KU at MRP 2020: Two transition-
based neural parsers. In Proceedings of the CoNLL
2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, pages 73 – 82, Online.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse.

Johan Bos, Valerio Basile, Kilian Evang, Noortje J.
Venhuizen, and Johannes Bjerva. 2017. The Gronin-
gen Meaning Bank, pages 463–496. Springer.

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang,
Yijia Liu, and Ting Liu. 2019. HIT-SCIR at MRP
2019: A unified pipeline for meaning representa-
tion parsing via efficient training and effective en-
coding. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 76–85, Hong Kong. Association for Compu-
tational Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shi-
jin Wang, and Guoping Hu. 2020. Revisiting pre-
trained models for chinese natural language process-
ing. arXiv preprint arXiv:2004.13922.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Lucia Donatelli, Meaghan Fowlie, Jonas Groschwitz,
Alexander Koller, Matthias Lindemann, Mario Mina,
and Pia Weißenhorn. 2019. Saarland at MRP
2019: Compositional parsing across all graph-
banks. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 66–75, Hong Kong. Association for Compu-
tational Linguistics.

Longxu Dou, Yunlong Feng, Yuqiu Ji, Wanxi-
ang Che, and Ting Liu. 2020. HIT-SCIR at
MRP 2020: Transition-based parser and iterative in-
ference parser. In Proceedings of the CoNLL 2020
Shared Task: Cross-Framework Meaning Represen-
tation Parsing, pages 65 – 72, Online.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In the Fifth International Conference on Learn-
ing Representations.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but More Accurate Semantic Dependency
Parsing. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics.

Michael Wayne Goodman. 2020. Penman: An open-
source library and tool for AMR graphs. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 312–319, Online. Association for Com-
putational Linguistics.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall,
Ondřej Bojar, Silvie Cinková, Eva Fučı́ková, Marie
Mikulová, Petr Pajas, Jan Popelka, Jiřı́ Semecký,
Jana Šindlerová, Jan Štěpánek, Josef Toman, Zdeňka
Urešová, and Zdeněk Žabokrtský. 2012. Announc-
ing Prague Czech-English dependency treebank 2.0.
In Proceedings of the Eighth International Confer-
ence on Language Resources and Evaluation.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1127–
1138, Vancouver, Canada. Association for Computa-
tional Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing universal dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779–2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Artur Kulmizev, Miryam de Lhoneux, Johannes
Gontrum, Elena Fano, and Joakim Nivre. 2019.
Deep contextualized word embeddings in transition-
based and graph-based dependency parsing - a tale
of two parsers revisited. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2755–2768, Hong Kong,
China. Association for Computational Linguistics.

Bin Li, Yuan Wen, Weiguang Qu, Lijun Bu, and Ni-
anwen Xue. 2016. Annotating the little prince with
Chinese AMRs. In Proceedings of the 10th Linguis-
tic Annotation Workshop held in conjunction with
ACL 2016 (LAW-X 2016), pages 7–15, Berlin, Ger-
many. Association for Computational Linguistics.

https://www.aclweb.org/anthology/P13-1023
https://www.aclweb.org/anthology/P13-1023
https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/K19-2006
https://doi.org/10.18653/v1/K19-2006
https://doi.org/10.18653/v1/K19-2006
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/2020.acl-demos.35
https://doi.org/10.18653/v1/2020.acl-demos.35
http://www.lrec-conf.org/proceedings/lrec2012/pdf/510_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/510_Paper.pdf
https://doi.org/10.18653/v1/P17-1104
https://doi.org/10.18653/v1/P17-1104
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/W16-1702
https://doi.org/10.18653/v1/W16-1702

51

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2019. Compositional semantic parsing
across graphbanks. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 4576–4585, Florence, Italy. Asso-
ciation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403–1414, Melbourne, Australia.
Association for Computational Linguistics.

Christian Matthiessen and John A Bateman. 1991. Text
generation and systemic-functional linguistics: ex-
periences from English and Japanese. Pinter Pub-
lishers.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL’05), pages 91–98, Ann Ar-
bor, Michigan. Association for Computational Lin-
guistics.

Seung-Hoon Na and Jinwoo Min. 2020. JBNU at
MRP 2020: AMR parsing using a joint state model
for graph-sequence iterative inference. In Pro-
ceedings of the CoNLL 2020 Shared Task: Cross-
Framework Meaning Representation Parsing, pages
83 – 87, Online.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajič, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.
2020. MRP 2020: The Second Shared Task on
Cross-framework and Cross-Lingual Meaning Rep-
resentation Parsing. In Proceedings of the CoNLL
2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, pages 1 – 22, Online.

Stephan Oepen, Omri Abend, Jan Hajic, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, and
Nianwen Xue, editors. 2019. Proceedings of the
Shared Task on Cross-Framework Meaning Repre-
sentation Parsing at the 2019 Conference on Natural
Language Learning. Association for Computational
Linguistics, Hong Kong.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceed-
ings of the Fifth International Conference on
Language Resources and Evaluation.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

David Samuel and Milan Straka. 2020. ÚFAL at
MRP 2020: Permutation-invariant semantic pars-
ing in PERIN. In Proceedings of the CoNLL 2020
Shared Task: Cross-Framework Meaning Represen-
tation Parsing, pages 53 – 64, Online.

Sainbayar Sukhbaatar, arthur szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages
2440–2448. Curran Associates, Inc.

Rob A. Van Der Sandt. 1992. Presupposition Projec-
tion as Anaphora Resolution. Journal of Semantics,
9(4):333–377.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

David Vilares and Carlos Gómez-Rodrı́guez. 2018.
A transition-based algorithm for unrestricted AMR
parsing. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 142–149,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of the Eighth International
Conference on Parsing Technologies, pages 195–
206, Nancy, France.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019a. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Associa-
tion for Computational Linguistics.

https://doi.org/10.18653/v1/P19-1450
https://doi.org/10.18653/v1/P19-1450
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.3115/1219840.1219852
https://doi.org/10.3115/1219840.1219852
https://www.aclweb.org/anthology/K19-2000
https://www.aclweb.org/anthology/K19-2000
https://www.aclweb.org/anthology/K19-2000
https://www.aclweb.org/anthology/K19-2000
http://www.lrec-conf.org/proceedings/lrec2006/pdf/364_pdf.pdf
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf
http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf
https://doi.org/10.1093/jos/9.4.333
https://doi.org/10.1093/jos/9.4.333
https://doi.org/10.18653/v1/N18-2023
https://doi.org/10.18653/v1/N18-2023
https://www.aclweb.org/anthology/W03-3023
https://www.aclweb.org/anthology/W03-3023
https://www.aclweb.org/anthology/W03-3023
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009

52

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019b. Broad-coverage semantic pars-
ing as transduction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3786–3798, Hong Kong, China. As-
sociation for Computational Linguistics.

Yue Zhang, Wei Jiang, Qingrong Xia, Junjie Cao, Rui
Wang, Zhenghua Li, and Min Zhang. 2019c. SUDA-
Alibaba at MRP 2019: Graph-based models with
BERT. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 149–157, Hong Kong. Association for Com-
putational Linguistics.

https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/K19-2014
https://doi.org/10.18653/v1/K19-2014
https://doi.org/10.18653/v1/K19-2014

