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Abstract

One of the remaining challenges for aspect term extraction in sentiment analysis resides in the
extraction of phrase-level aspect terms, which is non-trivial to determine the boundaries of such
terms. In this paper, we aim to address this issue by incorporating the span annotations of con-
stituents of a sentence to leverage the syntactic information in neural network models. To this
end, we first construct a constituency lattice structure based on the constituents of a constituency
tree. Then, we present two approaches to encoding the constituency lattice using BiLSTM-CRF
and BERT as the base models, respectively. We experimented on two benchmark datasets to eval-
uate the two models, and the results confirm their superiority with respective 3.17 and 1.35 points
gained in F1-Measure over the current state of the art. The improvements justify the effectiveness
of the constituency lattice for aspect term extraction.1

1 Introduction

In aspect-based sentiment analysis, aspect term extraction (ATE) serves as a fundamental task that aims
to identify aspect terms from review texts (Hu and Liu, 2004; Popescu and Etzioni, 2005). An aspect
term can be a word or a phrase that describes certain attribute of an entity (e.g., restaurant). For example,
in the sentence “The food is very average, the Thai fusion stuff is a bit too sweet”, the terms “food” and
“Thai fusion stuff ” are the aspect terms to extract in this task. One of the challenges for ATE is to extract
uncommon phrase-level aspect terms, which may contain complicated structures of words.

One line of the research work on ATE leverages the syntactic structure of a sentence explicitly. Early
research in this direction focuses on rule-based (Hu and Liu, 2004; Qiu et al., 2011) or feature engineering
approaches (Jin and Ho, 2009; Li et al., 2010) that require manually designed rules based on part-of-
speech tagging or dependency structure. They may also rely on features from predefined lexicons or
syntactic analysis from annotated corpus. These approaches have unavoidable limitations in that they are
labor-intensive and it takes extensive efforts to construct the rules and features. Besides, there are neural
network approaches (Yin et al., 2016; Wang et al., 2016) that encode the dependency parse structure
of a sentence in neural models. These work primarily focuses on syntactic dependency information
of sentence, given that the dependency structure may indicate the position of a potential aspect term.
Nevertheless, their tree-dependent nature of the encoding process makes the optimization inconvenient.
Another line of work resorts solely to deep learning techniques such as LSTM (Liu et al., 2015), CNN
(Xu et al., 2018), attention mechanism (Wang et al., 2017; Li et al., 2018) and Transformer (Devlin et
al., 2019; Xu et al., 2019) to automate the semantic representations and have achieved promising results.
Among them, Xu et al. (2019) applies an additional pre-training for BERT (Devlin et al., 2019) with
in-domain corpora before fine-tuning, which is the current state of the art for this task.

Although deep learning methods can produce increasingly appealing results, they suffer from phrase-
level aspect term extraction without explicit inclusion of sentence syntactic information (Xu et al., 2019).

∗Contributed equally.
†Xiaojun Quan is the corresponding author.

1Code is available at https://github.com/leekum2018/CLE4ATE
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Particularly, constituency parsing, which generates constituency trees with hierarchical constituents that
may indicate the span of a targeted aspect term, is rarely exploited in recent models. Take the sentence
“Other guests enjoyed pizza, santa fe chopped salad and fish and chips” in Figure 1 for example. The
intended aspect terms are “santa fe chopped salad” and “fish and chips”. In this example, constituency
parsing provides us with constituents that match the two aspect terms exactly, showing that the con-
stituents can be used to identify the spans of potential aspect terms, especially phrase-level aspect terms.

In this paper, we argue that the span annotations of constituents are the most critical information in
incorporating the constituency structure for an ATE model. That means we only need to pay attention
to the constituents rather than the whole hierarchical tree structure. To this end, we first propose to
construct a constituency lattice structure that contains both the original sentence and the corresponding
constituents. The idea is partially motivated by the work on Chinese named-entity recognition (NER)
(Zhang and Yang, 2018), in which a lattice structure is also used to help identify the boundaries of target
named entities in the sequence labeling process. We then introduce two methods to effectively encode the
constituency lattice structure for aspect term extraction, leading to our two models, namely CL-BiLSTM
and CL-BERT. For the first method, we propose to encode the constituency lattices into BiLSTM-CRF
(Huang et al., 2015) to enhance the representations of sentence words. For the second, we opt for BERT
as the base model (Devlin et al., 2019), which is a large pre-trained language model structured by a stack
of Transformer blocks. Since Transformers have a different architecture than LSTMs, it is non-trivial to
modify the input embedding layer of BERT like LSTMs. To address this issue, we propose to encode
the sentence and its constituents separately for several initial layers, and then apply attention to gather
constituency spans information from the constituents to enhance the sentence encoding. Experimental
results on two benchmarks show that the two proposed methods achieve substantial improvements over
the baselines, demonstrating the effectiveness of our constituency lattice encoding methods.

2 Related Work

2.1 Aspect Term Extraction

It tends to be a natural idea to use syntactic information for aspect term extraction (ATE). Early methods
in this direction pay most attention to dependency parsing. Qiu et al. (2011) used a dependency parser
to augment a seed collection of aspect and opinion terms through double-propagation. Yin et al. (2016)
proposed an unsupervised embedding method to encode dependency paths into a recurrent neural net-
work to learn high-level features of words, which are taken as input to conditional random fields (CRFs)
for aspect term extraction. Wang et al. (2016) proposed a joint model of recursive neural networks and
CRFs. Recently, deep neural networks techniques such as LSTM (Liu et al., 2015), CNN (Xu et al.,
2018), attention mechanism (Wang et al., 2017; Li et al., 2018) and Transformer (Devlin et al., 2019; Xu
et al., 2019) have been applied to learn better feature representations for supervised aspect extraction.
So far, we have not seen any effort in incorporating constituency information for aspect term extraction,
which could be essential to solve the extraction of complicated phrase-level aspect terms.

2.2 Lattice

How to encode the lattice structure rather than merely the sequential input has been intensively stud-
ied in NLP tasks, such as speech translation (Sperber et al., 2017; Sperber et al., 2019; Zhang et al.,
2019), Chinese named-entity recognition (Zhang and Yang, 2018; Peng et al., 2019; Li et al., 2020) and
neural machine translation (Xiao et al., 2019). Among them, Sperber et al. (2017) extended TreeLSTM
into LatticeLSTM with modified dynamic gated cells to capture multiple speech recognition hypothe-
ses. Similarly, Zhang and Yang (2018) used Lattice-LSTM to capture word lexicons and prevent errors
from wrong word segmentation for Chinese named-entity recognition. However, Lattice-LSTM is com-
putationally expensive, due to the complicated architecture of modified RNNs which is rather slow and
inconvenient for batch computation. Peng et al. (2019) proposed to incorporate lexicon information into
the vector representations of characters, which turns out to be very fast at inference time. While Lattice-
LSTM can modify the model structure according to the lattices, it tends to be different for Transformers
to do so because of the difference in model architectures. Sperber et al. (2019) and Zhang et al. (2019)
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Figure 1: An illustrative example of the constituency tree (a) of a sentence and the constituency lattice
(b) constructed to encode the syntactic information for aspect term extraction.

introduced attention mechanism with distance masking techniques for lattice to boost translation speech.
Xiao et al. (2019) proposed lattice positional encoding and lattice self-attention for Chinese neural ma-
chine translation. Compared to the above work, we address the aspect term extraction task by encoding
the constituency lattices obtained from constituency parsing into two current models.

3 Approach

In this section, we first formally define the problem of aspect term extraction (ATE) and then provide the
details of our constituency lattice encoding methods.

3.1 Problem Definition
Given a word sequence X = {x1, x2, ..., xn} of length n, the ATE task can be formulated as a word
level classification problem, in which a model takes X as input and produces contextual representations
{s1, s2, ..., sn}, where si ∈ Rds and ds is the dimension of the representation. The model outputs a
label sequence Y = {y1, y2, ..., yn} for the sequence, where yi ∈ {B, I,O} is used to indicate if the
corresponding word is at the beginning, inside or outside of an aspect term.

3.2 Constituency Lattice
As shown in Figure 1(a), constituency parsing produces a constituent-based parse tree for a sentence to
represent its syntactic structure. Given the bunch of information in the tree, we assume only a small
part of them is related to our task. Therefore, we construct a lattice structure from the constituency
tree, namely, constituency lattice. The constituency lattice is made up of a sentence together with a set of
constituents, each indicating a span annotation of the sentence, as shown in Figure 1(b). The constituency
lattice for a sentence can be regarded as a directed acyclic graph that is constructed as follows. For each
constituent, we connect it to the sentence according to the positions of its first and last words in the
original sentence. In addition, we filter the constituency lattice to preserve only the constituents with
noun phrase (NP) and verb phrase (VP) types to prune unimportant constituents (see our experiments
for specification). The resulted constituency lattice eliminates the tree structure and instead provides
necessary syntactic information more explicitly for aspect term extraction.

3.3 Constituency Lattice Encoding
In this subsection, we introduce how to encode the constituency lattice structure in BiLSTM-CRF (Huang
et al., 2015) and BERT-PT (Xu et al., 2019), which gives rise to our two models, namely Constituency
Lattice BiLSTM (CL-BiLSTM) and Constituency Lattice BERT (CL-BERT). BiLSTM-CRF is a BiL-
STM network with a subsequent CRF layer and BERT-PT is a variant of BERT (Devlin et al., 2019) with
post-training on large-scale domain-related data.

Constituency Lattice LSTM
The word embedding layer is used to map each token xi of an input sentence to a dense vector:

vi = ex(xi), (1)
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where ex denotes the word embedding lookup table.
To encode the constituency lattice, we slightly revise this layer by concatenating the embeddings of the

words and the constituency lattice. Concretely, for token xi, we denote the corresponding constituent set
as Si = {C1

i , C
2
i , ..., C

|Si|
i }, where Cji ∈ Si denotes a constituent in the constituency lattice that covers

token xi. Take the constituency lattice in Figure 1(b) as an example, the constituent set of token “fish”
is {“fish and chips”, “pizza, santa fe chopped salad and fish and chips” }. Then, the corresponding new
vector vi is obtained as follow:

vi = [ex(xi);Pi] (2)

Pi =
1

|Si|

|Si|∑
j=1

eC(Cji ), (3)

where [; ] means concatenation of vectors, and eC denotes the function that maps the word set of a
constituent Cji to a dense vector, which is defined as:

eC(Cji ) =
1

|Cji |

|Cj
i |∑

k=1

ex(xk). (4)

Here, |Cji | denotes the length of constituent Cji in number of words, and xk is the k-th word in Cji .
The new token representation vi is then fed to BiLSTM to obtain a hidden representation, on top of

which the CRF layer is applied to yield a probability distribution for aspect term prediction. This method
is partly inspired by the work of Peng et al. (2019), which presents a simplified approach to using lexicon
information for Chinese NER to remedy the complicated structure of Lattice-LSTM.

Constituency Lattice BERT
Essentially, pre-trained language models such as BERT derive most of their power from the pre-trained
parameters on large-scale general-domain data. Because of the discrepancy between the pre-training
and fine-tuning phases, it is non-trivial to revise the embedding layer of BERT like BiLSTM. Therefore,
we propose the Constituency Lattice BERT (CL-BERT) which employs both in-sequence attention and
lattice attention to overcome the above limitation. Specifically, it first encodes the sentence and each of
the corresponding constituents separately for several layers, in which in-sequence attention is applied.
Then, lattice attention is applied to gather necessary span information from the constituents to enhance
the sentence encoding for aspect term prediction. The overall architecture is shown in Figure 2.

Precisely, the in-sequence attention is the same as the self-attention in vanilla Transformer encoder.
After several initial layers, the representations of these sequences become contextualized. Then, we
introduce lattice attention for the remaining few layers from each constituent to the sentence in terms
of their representations of the special token “[CLS]”s. This allows the in-sequence attention of the
subsequent layers of the sentence to further propagate the constituency information to every token in the
sentence. Accordingly, the final token representations of the sentence are aware of both the sentence
structure and the span annotations of the corresponding constituents.

Formally, given a sentence X and the associated constituency lattice, the sentence X (used inter-
changeably with C0) and the constituents C1, C2, ..., Cm in the lattice are first encoded by BERT as
separate sequences. It is worth noting that the tokens in constituents preserve the same position indices
as in the original sentence, which enables the constituents to indicate the original structure of the con-
stituency lattice. For each sequence indexed by τ (0 ≤ τ ≤ m), the in-sequence attention updates the
local representations of the sequence: at layer l, it computes the representation of token i by gathering
information from other tokens inside the sequence:

hlτ,i =
∑
j

softmaxj

(
qTτ,i · kτ,j√

dk

)
· vτ,j (5)
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Figure 2: Architecture of CL-BERT, where solid lines denote in-sequence attention and dashed lines
denote lattice attention. The tokens in constituents have the same positional indices as in the sentence.

[q, k, v] =
[
W q,W k,W v

]
· hl−1 (6)

where dk denotes the dimension of hidden state h.
After some initial number L of layers, the encoder for C0 starts to gather information from the other

constituent encoders by means of lattice attention to update the representation of the “[CLS]” token of
C0. The lattice attention is cast by attending to each constituent Cη with the sentence sequence C0

as query. As the token “[CLS]” is expected to capture the representation of the whole corresponding
sequence, the lattice attention is based on the “[CLS]”s of all the sequences:

ĥj0,0 =
∑
η

softmaxη

(
q̂T0,0 · k̂η,0√

dk

)
· v̂η,0 (7)

[
q̂, k̂, v̂

]
=
[
W q̂,W k̂,W v̂

]
· hj (8)

where j > L and the attention weights are calculated for C0 and each constituent Cη using query q̂0,0
and key k̂η,0 (“[CLS]” is the first token of a sequence in BERT). Then, it uses the weights to aggregate
the values of v̂η,0 with η from 1 to m, and generates an augmented representation ĥj0,0, which is then
combined with the original representation to form a new representation for the “[CLS]” token of C0 in
layer j:

hj0,0 = Linear
([
hj0,0; ĥ

j
0,0

])
(9)

The information stored in the updated hj0,0 is accessible by other tokens in C0 through the in-sequence
attention in the subsequent layers. In doing so, the information of the constituency lattice can be encoded
into the representations of all tokens in the sequence C0.

In this paper, we ask CL-BERT to perform the lattice attention in the last 3 layers and get the final
representation for each token in X from the last layer, which is then mapped into the classification space
by a linear transformation. The setting with respect to the lattice attention is studied in the experiments.
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4 Experiments

4.1 Datasets
We conduct experiments on two widely-used benchmark datasets, including the Laptop dataset from
SemEval 2014 Task 4 (Pontiki et al., 2014) and the Restaurants dataset from SemEval 2016 Task 5
(Pontiki et al., 2016). Statistics of the two datasets are presented in Table 1. As in Xu et al. (2018), we
randomly hold out 150 examples from each training set for validation. The F1-Measure metric is used to
evaluate the performance of the baselines and our models.

4.2 Implementation Details

Dataset Train Test

#Sent #Aspect #Sent #Aspect

Restaurant 2000 1743 676 622
Laptop 3045 2358 800 654

Table 1: Statistics of our datasets. #Sent and #Aspect
denote the number of sentence and aspect, respectively.

For CL-LSTM, the word embeddings are ini-
tialized with GloVe-840B-300d (Pennington
et al., 2014) and fixed during training, and
the hidden size of BiLSTM layers is set to
300. We add a CRF (Lafferty et al., 2001)
layer to avoid illegal transitions between la-
bels. Adam (Kingma and Ba, 2014) is used
to optimize this model with a learning rate of
1e-4 and two momentum coefficients set to 0.9 and 0.999, respectively. We apply dropout with a rate of
0.5 for the input word embeddings and a rate of 0.2 for the other layers.

The in-sequence attention and other Transformer components in CL-BERT are initialized by the pre-
trained BERT-PT (Xu et al., 2019), which is post-trained on a large domain-specific corpus with param-
eters initialized from BERT-base.2 The additional parameters of lattice attention are initialized randomly
and trained from scratch. We use AdamW (Loshchilov and Hutter, 2017) to optimize this model with an
initial learning rate of 1e-5, which decreases linearly during training.

When constructing the constituency lattices, we filter the constituents based on their types and preserve
only those with type NP for the Restaurant dataset, and type NP or VP for the Laptop dataset.

4.3 Baselines
The baselines used for comparison can be organized into two categories.

The first category are models using multi-task learning to extract aspect terms and opinion terms
jointly. RNCRF (Wang et al., 2016) combines dependency tree with RNN and CRF for aspect and opin-
ion terms co-extraction. CMLA (Wang et al., 2017) uses a multi-layer coupled-attention network for the
co-extraction. MIN (Li and Lam, 2017) employs three LSTMs and dependency rules to identify aspect
and opinion terms. HAST (Li et al., 2018) uses opinion information to assist aspect term extraction.

The second category are single-task approaches. BiLSTM-CRF (Huang et al., 2015) adopts BiLSTM
with a subsequent CRF layer. WDEmb (Yin et al., 2016) enhances CRF with word embeddings, linear
context embeddings and dependency path embeddings. DE-CNN (Xu et al., 2018) employs two types
of pre-trained embeddings: general-purpose embeddings and domain-specific embeddings, which are
stacked and passed into a convolution neural network. BERT-base (Devlin et al., 2019) is a large pre-
trained language model fine-tuned for ATE. BERT-PT (Xu et al., 2019) adopts the same architecture
and initial parameters of BERT-base and then post-trains on large-scale in-domain data and a machine
reading comprehension dataset (Rajpurkar et al., 2016). It is the current state-of-the-art method for ATE.

Our two models are represented as CL-LSTM and CL-BERT, which perform constituency lattice
encoding in BiLSTM-CRF and BERT-PT, respectively.

5 Results and Analysis

5.1 Overall Performance
The overall results are shown in Table 2, from which several observations can be noted. First, our CL-
LSTM model outperforms most of the baseline models. Second, the performance of BiLSTM-CRF

2The weights of BERT-PT are available at https://github.com/howardhsu/BERT-for-RRC-ABSA
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is significantly improved when incorporated with our constituency lattice structure. CL-LSTM also
outperforms the baselines such as RNCRF, WDEmb, and MIN, which explicitly model the dependency
structure in different ways. This may prove that constituency structure is more prominent for ATE than
dependency structure. Third, the DE-CNN and BERT-PT models can already outperform all the existing
ATE models by a significant margin, demonstrating the power of domain-specific post-training for this
task. Nevertheless, after encoded with our constituency lattice, CL-LSTM has comparable performance
with DE-CNN, while CL-BERT also sees considerable improvement and achieves a new state of the art.

Model Restaurant Laptop
RNCRF 69.72 78.42
HAST 73.61 79.52
MIN 73.44 77.58
CMLA 72.77 77.80
BiLSTM-CRF 71.3 76.91
WDEmb - 75.16
DE-CNN 74.37 81.59
BERT 74.1 79.28
BERT-PT 77.97 84.26
CL-LSTM 76.56 79.29
CL-BERT 81.14 85.61

Table 2: Overall results (F1:%) of differ-
ent methods on the Restaurant and Laptop
datasets.

These results demonstrate the success of our con-
stituency lattice encoding in capturing important con-
stituency information for aspect term extraction.

Moreover, we can also observe that the perfor-
mance gained by our constituency lattice encoding
over the baselines is more obvious on the Restaurant
dataset than on Laptop. We speculate the reason is
that the Restaurant dataset has more phrase-level as-
pect terms than Laptop, which is to be further dis-
cussed in Section 5.2.

5.2 Effectiveness of Constituency Lattice

The constituency lattices provide information about
the phrase structure of a sentence such that models
with constituency lattice encoding can benefit from
the span annotations. To demonstrate this point, we
first examine the relation between aspect terms and
constituents by counting how many aspect terms in a
dataset that match exactly one of the corresponding constituents. The results under the Coverage column
in Table 3 show that most of the aspect terms in the Restaurant dataset coincide with NP constituents,
while most aspect terms in Laptop coincide with NP or VP constituents.

We further conduct an investigation over the extracted aspect terms on the test sets with an evaluation
criterion Ill Extraction Rate (IE-Rate), which is computed by: IE-Rate = #ill extraction

#aspect term × 100, where
“#aspect term” denotes the number of extracted aspect terms and “#ill extraction” is the number of
extracted aspect terms with incorrect boundaries, excluding the cases that have no span intersection with
gold aspect terms. As shown in Table 3, even though BERT-PT has better F1-score than BiLSTM-CRF,
they both struggle in terms of IE-Rate, which indicates their limited capabilities of extracting accurate
boundaries. On the other hand, both CL-LSTM and CL-BERT reduce the IE-Rate scores over their
baselines, which demonstrates the effectiveness of our constituency lattice encoding in helping models
capture the correct span segmentation of aspect terms. Moreover, similar to the overall performance, the
improvement in IE-Rate on the Restaurant dataset is more significant than on Laptop.

Dataset Coverage IE-Rate

Train Test BiLSTM-CRF CL-LSTM BERT-PT CL-BERT

Restaurant 90.65 86.76 9.75 6.91 9.20 5.76
Laptop 86.08 82.87 12.19 11.75 12.81 9.77

Table 3: Percentages of aspect terms that coincide with a specific constituent (NP for Restaurant and
NP/VP for Laptop) and the Ill Extraction Rate (IE-Rate: %) scores of different methods.

To better understand how the two methods for constituency lattice encoding work, as well as the
difference between the two ATE datasets, we present a case study with several testing examples. BERT-
PT and CL-BERT are used as the extraction models. As shown in Table 4, CL-BERT is able to extract
long and complicated aspect terms, while BERT-PT tends to extract shorter aspect terms, leading to
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incomplete extractions. Additionally, CL-BERT fails to extract the full term in the last case which
is from the Laptop dataset. This error indicates that some aspect terms in the Laptop dataset contain
complicated structures which are difficult for the constituency lattices to distinguish.

No. Input and Result

1
Input: I ended the meal with the unusual dessert of a port and chocolate tasting ....yummy!
BERT-PT: dessert, port and chocolate tasting;
CL-BERT: dessert of a port and chocolate tasting

2

Input: Bring your cell phone cause you may have to wait to get into the best sushi restaurant
in the world: BLUE RIBBON SUSHI .
BERT-PT: sushi, RIBBON;
CL-BERT: sushi, BLUE RIBBON SUSHI

3

Input: I am exceedingly pleased to report that my dinner at Ray’s Boathouse last Friday
completely exceeded my expectations.
BERT-PT: Ray;
CL-BERT: Ray’s Boathouse

4

Input: I have had it over a year now with out a Glitch of any kind..I love the lit up keys and

screen display ...this thing is Fast and clear as can be.
BERT-PT: keys, screen display;
CL-BERT: lit up keys, screen display

5

Input: ... $450 savings to buy 16GB of RAM , Two Seagate Momentus XT hybrid drives

and an OWC upgrade kit to install the second hard drive .
BERT-PT: 16GB of RAM, Seagate, XT hybrid drives, OWC upgrade kit, hard drive;
CL-BERT: 16GB of RAM, Seagate Momentus XT hybrid drives, OWC upgrade kit, hard drive

6

Input: I opted for the SquareTrade 3-Year Computer Accidental Protection Warranty ($1500

-2000) which also support ... that are NOT covered by AppleCare .
BERT-PT: Protection Warranty, AppleCare;
CL-BERT: Computer Accidental Protection Warranty, AppleCare

Table 4: Case analysis on BERT-PT and CL-BERT. The ground truth aspect terms in the sentences are
shaded. The first three cases are from the Restaurant dataset and the last three are from Laptop.

5.3 Effect of Lattice Attention
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Figure 3: Performance of CL-BERT with
different number of lattice attention.

Recall that CL-BERT performs lattice attention in the last
few layers of BERT to propagate information from the con-
stituents to the sentence. In this experiment we investigate
the effect of this attention in different layers. That means
we change the number of layers for the attention to take
place from 1 to 7. For example, when the number is 5,
it means the attention is performed for the last five layers.
The results of this experiment on both datasets are plotted
in Figure 3. We can note that CL-BERT achieves the best
performance when the number of layers to perform lattice
attention is 3, and the performance goes down when the
number is greater than 3. We suspect that the represen-
tations of sequences have not been adequately learned by
in-sequence attention in the earlier layers (too many layers
for lattice attention). To verify this conjecture, we further
conduct an experiment by sliding the 3-layer lattice attention along the different levels of CL-BERT. The
results in Table 5 show that the performance consistently increases when lattice attention is performed in
deeper layers, meaning that late lattice attention is better than early one.
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Dataset Index of layer with lattice attention

[1, 2, 3] [4, 5, 6] [7, 8, 9] [10, 11, 12]

Restaurant 75.78 77.03 76.53 81.14
Laptop 82.74 83.28 85.12 85.61

Table 5: Performance (F1, %) of CL-BERT with three-layer lattice attention at different layers.

5.4 Effect of Pruning
The statistics of the datasets show that 98.0% of the aspect terms in the Restaurant dataset are noun
phrases, and 97.7% of the aspect terms in the Laptop dataset are noun phrases or verb phrases. So we
preserve the constituents of type NP for the Restaurant dataset and types NP and VP for Laptop. In this
subsection, we conduct an ablation study to evaluate the influence of this pruning strategy. We present
the two proposed models’ results with full and pruned constituency lattice respectively for comparison.
From the results in Table 6, we can observe that employing pruned constituency lattice consistently
outperforms that without it. This proves that the irrelevant types of constituents can bring in noises when
incorporating the syntactic information, and thus it is crucial to only preserve the constituents that are
most related to aspect terms.

5.5 Effect of Different Parsers
Dataset

CL-LSTM CL-BERT

Prune Full Prune Full

Restaurant 76.56 72.83 81.14 80.34
Laptop 79.29 77.36 85.61 85.32

Table 6: Performance of CL-LSTM and CL-BERT
on pruned or full constituency lattice.

Undoubtedly, constituency parsing plays a piv-
otal in our models. To evaluate the impact of
different constituency parsers, we conduct a
study to implement our approaches based on two
well-known constituency parsers: self-attentive
parser (Kitaev and Klein, 2018)3 and a con-
stituency parser (Joshi et al., 2018) implemented
by AllenNLP (Gardner et al., 2017).4 Table 7
shows the results of our models with different parsers for aspect term extraction. The performance of the
two parsers in F1-score on the Penn Treebank WSJ test set (Marcus et al., 1993) is also provided for ref-
erence. From the table, we can observe that the better AllenNLP parser consistently leads to better ATE
performance. This implies that while the proposed constituency lattice encoding methods can capture
useful constituency information based on existing constituency parsers, they can be further improved
with the advances of constituency parsing.

Parser Parsing Quality CL-LSTM CL-BERT

WSJ test set Restaurant Laptop Restaurant Laptop

Self-attentive Parser 93.55 73.51 78.59 78.93 84.13
AllenNLP Parser 94.30 76.56 79.29 81.14 85.61

Table 7: Results of our models based on two different parsers together with the performance of the
parsers. Higher F1-score on the Penn Treebank WSJ test set always denotes better parsing performance.

6 Conclusion

This paper presents our efforts to address the problem of aspect term extraction, especially phrase-level
aspect term extraction, in aspect-based sentiment analysis. Motivated by the recent process in sequence
labeling problems such as Chinese named-entity recognition, we propose to incorporate constituency

3https://github.com/nikitakit/self-attentive-parser
4The AllenNLP Parser is used for the previous experiments.
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lattices in neural models to leverage the syntactic information explicitly for aspect term extraction. We
demonstrate how to acquire the constituency lattices from constituency parse trees and encode them in
two existing neural models, namely BiLSTM-CRF and BERT. Extensive experiments are conducted on
two benchmark datasets to evaluate the two models, and the experimental results confirm their effective-
ness with respective 3.17 points and 1.35 points gained in F1-Measure over the current state of the art.
Since constituency parsing plays a critical role in our constituency lattice encoding, we show that the
two models can be further improved once better parsers are provided. Finally, although our models are
shown to deal with most of the phrase-level aspect term extractions, the error analysis shows that there
are still long aspect terms that cannot be extracted completely by either our models or the baselines. But
we believe this issue can be relieved as soon as there are more such samples provided in the training set.
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