
Proceedings of the 28th International Conference on Computational Linguistics, pages 6161–6171
Barcelona, Spain (Online), December 8-13, 2020

6161

Text Classification by Contrastive Learning and Cross-lingual Data
Augmentation for Alzheimer’s Disease Detection

Zhiqiang Guo1, Zhaoci Liu1, Zhen-Hua Ling1∗, Shijin Wang2, Lingjing Jin3, Yunxia Li3
1National Engineering Laboratory for Speech and Language Information Processing,

University of Science and Technology of China, Hefei, China
2iFLYTEK Research, iFLYTEK Co., Ltd., Hefei, China

3Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
{gzq,zcliu8}@mail.ustc.edu.cn, zhling@ustc.edu.cn,

sjwang3@iflytek.com , {lingjingjin,doctorliyunxia}@163.com

Abstract

Data scarcity is always a constraint on analyzing speech transcriptions for automatic Alzheimer’s
disease (AD) detection, especially when the subjects are non-English speakers. To deal with this
issue, this paper first proposes a contrastive learning method to obtain effective representations
for text classification based on monolingual embeddings of BERT. Furthermore, a cross-lingual
data augmentation method is designed by building autoencoders to learn the text representations
shared by both languages. Experiments on a Mandarin AD corpus show that the contrastive
learning method can achieve better detection accuracy than conventional CNN-based and BERT-
based methods. Our cross-lingual data augmentation method also outperforms other compared
methods when using another English AD corpus for augmentation. Finally, a best detection
accuracy of 81.6% is obtained by our proposed methods on the Mandarin AD corpus.

1 Introduction

Alzheimer’s disease (AD) is a worldwide popular neurodegenerative disease and the major cause of de-
mentia. It is estimated that 32.8 million people worldwide living with AD in 2015, resulting in economic
costs of 604 billion US dollars, and the number of patients is expected to almost double every 20 years
(Prince et al., 2016). With no cure has been found yet, in order to allow effective intervention in early
stages to delay onset of the disease, early detection of AD is crucial (Dubois et al., 2016). Nonethe-
less, nowadays common methods of AD diagnosis, including cognitive tests and biomarker detection,
are too time-consuming and expensive to cover all potential patients. Thus, developing an effective and
convenient method for early AD detection becomes a valuable research topic.

Language impairment generally appears at the early stages of AD (Morris, 1996). Suffering the dis-
ease, patients have significant worse performance than controls on a standard aphasia test, specifically
in the areas of verbal expression, auditory comprehension, repetition, reading, and writing (Murdoch et
al., 1987). The performances of AD patients on some language tasks, such as picture description and
sentence repetition, are distinctive from healthy people, which give us a hint to utilize these tasks to
detect AD. Other advantages of these language tasks include their simple procedure and quick process.
One usually completes the picture description task within 5 minutes and needs few instructions.

A lot of researches have applied machine learning approaches to automatic AD detection based on
language tasks. Fraser et al. (2016) extracted total 370 features considering part-of-speech, syntax,
acoustics, as well as other aspects of linguistics, and obtained a best average accuracy of 82% for binary
classification using the 35 top-ranked features on the DementiaBank corpus. Wanker et al. (2017)
designed a single feature by building two trigram language models from the speech transcriptions of
AD patients and controls respectively, and resulted in an EER of 77%. Several later studies (Fraser et
al., 2019; Fritsch et al., 2019; Guo et al., 2019) continued to show the effectiveness of language model
features.

AD detection based on speech transcriptions is essentially a text classification task. Various models
have been proposed to solve general text classification tasks, such as convolutional neural networks
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(Kim, 2014), recurrent neural networks (Liu et al., 2016), and hierarchical attention networks (Yang et
al., 2016). Recently, the advent of large-scale self-supervised pretraining has played a central role in the
progress of natural language processing (NLP) research (Devlin et al., 2019; Liu et al., 2019a; Yang et
al., 2019). In particular, BERT (Devlin et al., 2019) greatly improved the performance of several general
NLP benchmarks such as GLUE (Wang et al., 2018) and SuperGLUE (Wang et al., 2019). Fine-tuning
BERT is a straightforward and powerful solution to text classification. However, in the AD detection
case, it faces a major challenge, which is data scarcity.

Data scarcity is always an issue of building automatic AD detection models, and the difficulties in
recruiting eligible subjects make it hard to overcome. It constrains model capacity as powerful models
usually have a large number of trainable parameters and tend to overfit small datasets. The DementiaBank
corpus (Becker et al., 1994) contains only 256 cases labeled as “possible” or “probable” AD, which is
still larger than most of the similar datasets in other language, such as Japanese (Shibata et al., 2016),
Portuguese (Aluı́sio et al., 2016), and Mandarin Chinese (Lai et al., 2009). The Mandarin corpus used in
this study contains 104 samples of AD patients, which is also much smaller than DementiaBank.

In order to deal with the issue of data scarcity, this paper designs a contrastive learning method to
learn effective representations for text classification. First, we rely on BERT extracting contextual word
embeddings for every sample in the corpus. Then, a weighted sum of word embeddings, i.e. a paragraph
vector, is obtained by contrastive learning and finally a similarity-based decision is made for classifying
test samples. Since embedding features of samples are fixed as input and there are no model parameters in
the similarity-based decision, this method is expected to ease the problem of data scarcity. Additionally,
an autoencoder-based cross-lingual data augmentation method is proposed to augment the Mandarin
corpus with a larger English one. Since merging the BERT-based paragraph vectors of both languages
directly to build a classifier is unsuitable, we train an autoencoder-based model to obtain the latent
representations shared by both languages, where a large general-domain parallel corpus is utilized. Then,
the encoded paragraph vectors of both languages can be combined to estimate the classifier for Mandarin
transcriptions.

Our contributions in this paper are twofold. First, a contrastive learning method is designed which
studies effective representations for AD detection based on BERT embeddings. Experimental results
show that this method achieves better detection accuracy than conventional CNN-based and BERT-based
methods by 3.9% at least on our Mandarin corpus. Second, an autoencoder-based method is further pro-
posed to augment original Mandarin corpus with a larger English one, which outperforms other compared
data augmentation methods by 1.4% at least in our experiments.

2 Related Work

2.1 Fine-tuning Pretrained Language Models on Small Datasets

Typically, pretrained language models are first trained on large corpora, and then fine-tuned on down-
stream tasks by taking the model parameters as a starting point, while adding one task-specific layer
learned from scratch. Despite its simplicity and ubiquity in modern NLP, this process has been shown
to be brittle (Devlin et al., 2019; Phang et al., 2018; Zhu et al., 2019), where fine-tuning performance
can vary substantially across different training episodes, even with fixed hyperparameter values. Dodge
et al. (2020) gave a systematic study of this phenomenon and we also observed the brittleness in fine-
tuning BERT on our AD corpus. We suspect the brittleness is due to the small size of our AD corpus,
especially considering the large amount of parameters of BERT. So instead of directly fine-tuning BERT,
the feature-based approach (Devlin et al., 2019) is followed in this paper, i.e. we take BERT as a feature
extractor to get fixed embedding features, and then build models on top of it.

2.2 Autoencoders for Learning Bilingual Representations

Autoencoder is an unsupervised neural network that learns how to efficiently compress and encode data
by measuring the loss of reconstructing the original data from the encoded representations (Baldi, 2012).
Chandar AP et al. (2014) and Lauly et al. (2014) both applied autoencoders to learn bilingual word
representations. They showed that by simply learning to reconstruct the bag-of-words representations
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Mandarin English (DB)
HC AD HC AD

Number 104 104 242 256
Gender(F/M) 60/44 54/50 155/87 159/97
Age 67.6(9.3) 74.2(9.6) 64.8(7.7) 72.9(8.1)
Education 11.6(3.2) 10.3(4.0) 14.2(2.6) 12.4(3.2)
MMSE 28.4(1.7) 18.1(5.9) 29.1(1.1) 18.8(5.9)

Table 1: Demographics of participants in our Mandarin corpus and the English DementiaBank (DB)
corpus, where MMSE stands for the score of mini-mental state examination.

of aligned sentences within and between languages, high-quality representations can be learnt without
word alignments. Our work is inspired by them. The differences are that our inputs of autoencoders are
the weighted sums of pretrained word embeddings, i.e., paragraph vectors, and our method aims to learn
a function that can map paragraph vectors of two languages into a common space, while maintain their
representation capabilities. Bag-of-words training is also not used in our work.

2.3 Utilizing Cross-lingual Data for AD Detection

Some studies have already worked on utilizing cross-lingual data for AD detection. Fraser et al. (2019)
used information units to transform cross-lingual transcriptions into the same domain, and then intro-
duced a new set of concept-based language model features. A best AUC of 0.89 was achieved by using
a multilingual training set. Li et al. (2019) proposed a method to learn a correspondence between inde-
pendently engineered lexicosyntactic features in two language, which was based on linear regression and
required a large parallel corpus of out-of-domain data. Their method outperformed both monolingual
and machine translation-based baselines.

Different from their studies, we utilize BERT to get monolingual representations instead of designing
hand-designed features. Besides, we propose an autoencoder-based model to learn bilingual paragraph
vectors, while Fraser et al. (2019) chose to transform raw data and Li et al. (2019) adopted linear
regression to find the map function between two sets of features.

3 Datasets

The Mandarin corpus used in this paper was collected at the Shanghai Tongji Hospital (Liu et al., 2019b).
All participants were with the complaint of memory impairment and underwent a comprehensive neu-
ropsychological battery, including the mini-mental state examination (Tombaugh and McIntyre, 1992).
Diagnosis was made according to the core clinical criteria to dementia of NIA-AA established in 2011
(Sperling et al., 2011). The corpus contains the transcriptions of the Mandarin speech from 208 partici-
pants on the Cookie Theft picture description task, 104 of them were healthy controls and the other 104
were diagnosed as AD patients. This task asked participants to say whatever happened in the Cookie
Theft picture as much as possible, and allowed encouragement from interviewers when participants had
difficulties. Speech recordings were manually transcribed following the CHAT (Codes for the Human
Analysis of Transcripts) protocol (MacWhinney, 2000), same as DementiaBank. The average length
of dialogue samples in the this corpus is 127.4 characters with a standard deviation of 61.7 characters.
Demographics of participants in the corpus are shown in Table 1.

The English DementiaBank (DB) corpus was used for data augmentation in our experiments. The
DB corpus contains 498 samples from 292 participants taking the Cookie Theft picture description task,
242 of these samples were labeled as healthy controls and the other 256 were labeled as “possible” or
“probable” AD, which we refer as an AD group. Each sample has an audio recording together with
its corresponding transcription. Only the transcriptions are used in this study. The average length of
dialogue samples in the corpus is 122.7 words with a standard deviation is 66.9 words. Demographics of
participants in this corpus are also shown in Table 1.

In our proposed cross-lingual data augmentation method, a parallel Mandarin-English corpus is nec-
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Figure 1: The classification procedures of our proposed methods. The AEc.encoder module is con-
ducted only when our autoencoder-based cross-lingual data augmentation method is applied.

essary to train the autoencoders for deriving the paragraph representations shared by both languages.
The OpenSubtitle corpus (Lison and Tiedemann, 2016) was adopted as the parallel corpus in our imple-
mentation. We utilized the Mandarin-English subset of this corpus, which contains 9.9 million lines of
dialogue.

4 Methods

4.1 Contrastive Learning for Text Classification
The procedures of our classification model for AD detection is shown in Figure 1. Let xc denote a
sample of the Mandarin corpus. We first use the Chinese BERT model to extract embedding features of
xc and obtain Emb(xc) ∈ Rn×demb , where n is the sequence length of xc and demb is the dimension of
embeddings. Then, a pooling layer is applied which converts Emb(xc) into a single vector sc ∈ R1×demb ,
i.e., the paragraph vector for representing this sample. Specifically, this pooling layer employs a trainable
memory vector mc ∈ Rdemb×1 and calculate sc as

wc = softmax(Emb(xc)mc), (1)

sc = w>c Emb(xc). (2)

Afterwards, a similarity-based decision is made based on the pooling output to predict the AD or
control label of the sample. We calculate the mean cosine similarity between sc and the paragraph
vectors of all AD instances in the training set. The mean cosine similarity between sc and the paragraph
vectors of all control instances in the training set is also calculated. Finally, the sample xc is classified
into the class with higher mean similarity. Since there are no model parameters in the similarity-based
decision and BERT is not fine-tuned in our classification model, only the memory vector mc needs to be
estimated at the training stage.

In order to train the memory vector mc for obtaining powerful paragraph vector representations, we
introduce contrastive regularization. First, N1 AD instances {xadi }

N1
i=1 are sampled from the training

set Xc and a pooled paragraph vector sadi is obtained for each of them. Then, for each xadi , N2 AD
instances {xadi,j}

N2
j=1 and N2 control instances {xcti,j}

N2
j=1 are further randomly selected from Xc. Their

paragraph vectors sadi,j and scti,j are also calculated. Under contrastive regularization, sadi is expected to be
similar with all sadi,j and dissimilar to scti,j . Therefore, the memory vector mc is estimated by minimizing

CRc =

N1∑
i=1

N2∑
j=1

max(Sim(sadi , s
ct
i,j)− Sim(sadi , s

ad
i,j), 0), (3)

where Sim(·, ·) calculates the cosine similarity between two vectors.
As shown in Figure 1, once our autoencoder-based cross-lingual data augmentation method is applied,

a separate encoder module is converting the paragraph vector sc extracted by monolingual BERT into a
representation space shared by both languages. A similarity-based decision is then made by the input of
bilingual representation tc, with the aid of English AD data. Details of the encoder will be introduced in
the next subsection.

4.2 Autoencoder-based Cross-lingual Data Augmentation
The aim of our cross-lingual data augmentation method is to improve the performance of the AD de-
tection method introduced in Section 4.1 on the Mandarin AD corpus by utilizing another English AD
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Figure 2: The training procedure of our autoencoder-based cross-lingual data augmentation method. Xe

and Xc denote AD datasets in English and Mandarin, respectively. Xe
p and Xc

p stand for the English part
and the Chinese part of the parallel corpus Xp. CR is short for contrastive regularizer.

corpus. It is achieved by training a unified model containing two trainable pooling layers Poolinge and
Poolingc and two autoencoders AEe and AEc for English and Mandarin respectively, as showed in Fig-
ure 2. The inputs of each autoencoder are the paragraph vectors calculated by monolingual BERT and
the trainable pooling layer, which has the same structure as the one introduced in Section 4.1. The two
autoencoders are expected to convert the language-dependent paragraph vectors into a latent represen-
tation space shared by both languages. Therefore, another corpus containing parallel Mandarin-English
sentences is also necessary when training the model.

Let Xp denote the parallel Mandarin-English corpus. For a pair of parallel samples (xep, x
c
p) ∈ Xp,

they are first transformed into paragraph vectors sep and scp after BERT and pooling operations. Then, an
autoencoder loss for training the unified model is defined as

lossae = ||sep − ŝep||+ ||scp − ŝcp|| − λ1Sim(tep, t
c
p), (4)

where tep and tcp are encoded representations of sep and scp respectively, and ŝep and ŝcp are reconstructed rep-
resentations of sep and scp respectively. The first two terms in Eq. (4) are conventional autoencoder losses,
while the third term with weight λ1 is a similarity measure that helps model to learn the representations
shared by both languages. Here, the cosine similarity is also used for the Sim(·, ·) function.

In addition to lossae, three contrastive regularizers are also designed based on the Mandarin and
English AD corpora to train the unified model. As shown in Figure 2, CRc is the same as the one
introduced in Section 4.1 which utilizes the Mandarin AD corpus. CRe is designed accordingly using
the English AD corpus. CRbi is a contrastive regularizer that is shared by both languages and uses
the encoded paragraph representations of both languages as training data. Therefore, the final loss for
training the unified model is defined as

loss =
∑
Xp

lossae + λ2(CRe + CRc) + λ3CRbi, (5)

where λ2 and λ3 are weighting coefficients.
After training, we obtain encoded bilingual prargraph vectors of both AD corpora as input to make

similarity-based decisions instead of Mandarin paragraph vectors only. Specifically, we combine all
data from DB corpus and the training data from Mandarin AD corpus to construct the overall training
dataset, and then evaluate test samples from the Mandarin AD corpus based on all the training data at
the similarity-based decision step. The way of using multi-domain data is in fact the ALL method in
(Daumé III, 2007), and is adopted as default in the following experiments.
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5 Experiments

5.1 Implementation Details

In this paper, we use BERT as our default pretrained language model, while any suitable model can be
employed as well. Outputs at the penultimate layer of BERT-base1 models were taken as embeddings
and demb = 768. The input transcriptions contained dialogues of participants and interviewers, for the
interviewer’s encouragement may provide clues to a participant’s cognitive status. Mean accuracy of 10
times 10-fold cross validation was used as the metric of evaluation.

In the case of classification without data augmentation, we set N1 = 20 and N2 = 20 for CRc, which
are sufficiently large for stablely training the model. Learning rate was 1e-5, and we stopped training
when the training loss decreased less than 0.01 after 5 epochs. Here an epoch means we iterate over all
samples labeled as AD in the training data.

For cross-lingual data augmentation, the encoder and the decoder of both autoencoders contained two
feed-forward layers with 768 hidden units at each layer. ReLU is adopted as activation function. The
Opensubtitle corpus we used contained 9.9 million lines of movie subtitles. Since each sample in the
AD datasets was much longer than one line of movie dialogue, we combined 50 consecutive lines of
dialogue into one sample. We set N1 = 20 and N2 = 10 for all three contrastive regularizers, and
λ1 = λ2 = λ3 = 1 for the final loss function. Batch size was 512 and learning rate was 1e-5. We used
10% of Opensubtitle corpus as a validation set, and stopped training when the validation loss decreased
less than 0.01 after 5 epochs.

5.2 Baseline Methods

We compared our contrastive learning method with three baselines, 1) a CNN model proposed by Kim.
(2014) for text classification, 2) fine-tuning BERT directly on the Mandarin AD corpus, and 3) fine-
tuning BERT but with parameters at first to penultimate layers being frozen.

The CNN model adopted the same structure as in Kim. (2014). We used 300d Glove (Pennington et
al., 2014) word vectors as our word embeddings, and padded the input word sequence to length of 512.
Filter windows of 3, 4, 5 with 100 feature maps each were used as the convolutional layer, followed by
rectified linear units and a max-over-time pooling. Finally, a fully connected layer took the pooled vector
as input and had softmax output. The loss was cross entropy. Dropout rate of 0.5, L2 gradient constraint
of 3, and mini-batch size of 50 were used.

We fine-tuned BERT on the Mandarin corpus by adding one fully-connected layer on top of the first
token [CLS] in the output sequence of BERT. The added layer has a softmax output for classification.

We also compared our cross-lingual data augmentation method with two baseline methods for cross-
lingual data augmentation, i.e., multilingual pretrained language model and machine translation .

Multilingual pretrained language model: Multiligual BERT (mBERT)2 has the same structure and
training strategy as BERT, except that the training data of mBERT was from multiple languages. mBERT
has got quite good results on some cross-lingual tasks, such as cross-lingual natural language inference.
We used mBERT in the same way as we used BERT, i.e., fine-tuning or frozen. The difference was that
the data of fine-tuning mBERT also contained the English DB corpus.

Machine translation: Two different translation strategies were implemented in our experiments,
Translation-Train and Translation-Test. Translation-Train means translating extra train data into the lan-
guage of test data, which is translating English into Chinese in our case. On the other hand, Translation-
test means translating the training and test data of test language into the language of extra train data.
After translation, we used data of both languages to train a unified model through the proposed con-
trastive learning method, same as we did in the case of no data augmentation.

When fine-tuning BERT and mBERT in frozen or not frozen ways, we followed the same hyperpa-
rameters suggested by Devlin et al. (2019). Batch size was 32, learning rate was 5e-5, number of epochs
was 3 and dropout probability was always kept at 0.1.

1https://github.com/google-research/bert
2https://github.com/google-research/bert/blob/master/multilingual.md
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Accuracy (%)

w/o DA

CNN (Kim, 2014) 70.3(4.61)
BERT(fine-tuning) 68.5(5.26)
BERT(frozen) 74.3(1.85)
Our method 78.2(2.16)

with DA

mBERT(fine-tuning) 70.9(4.86)
mBERT(frozen) 75.2(2.36)
Translation-Train 78.7(1.79)
Translation-Test 80.2(1.53)
Our method 81.6(1.78)

Table 2: Accuracies of AD detection on the Mandarin AD corpus using different methods. DA stands
for cross-lingual data augmentation. Numbers in brackets are the standard deviations of 10 times cross
validation.

5.3 Results

Table 2 shows the accuracies of AD detection on the Mandarin AD corpus using different methods. We
can see that fine-tuning BERT and mBERT directly achieved the worst performance among all methods
without data augmentation and with data augmentation, respectively. Partially fine-tuning BERT and
mBERT by freezing most of their parameters obtained much better accuracies than training all parame-
ters. These results indicate that simply fine-tuning large pretrained models on a small AD corpus is not
recommended because there are too many parameters to update.

When data augmentation was not applied, the CNN-based text classifier performed better than fine-
tuning BERT, but much worse than our method. The reason may be that the CNN model didn’t utilize
pretrained models and contained much more parameters than our proposed one. Our contrastive learning
method outperformed other methods by at least 3.9% on the accuracy of AD detection.

When cross-lingual data augmentation was applied, Translation-Test method achieved an accuracy
of 80.2%, which was 2% higher than our method without data augmentation. The promising result
perhaps is due to high quality of the English BERT model and intrinsic differences between English
and Mandarin, comparing with the Translation-Train scenario. Our autoencoder-based method obtained
the best performance among all methods, resulting an accuracy of 81.6% which was better than other
methods by 1.4% at least.

5.4 Ablation Studies

5.4.1 Models without Data Augmentation
Several ablated models were built for comparison based on our proposed method.

Monologue: We discards the transcriptions from interviewers and only used the transcriptions from
participants as inputs to test the performance of our proposed method.
[CLS] pooling: [CLS] is the first and a special token in the input sequence of BERT. Its embedding

is popularly used as the pooled representation when fine-tuning BERT on downstream tasks. This model
replaced our pooling method introduced in Section 4.1 with [CLS] pooling, i.e., utilizing [CLS] embed-
dings as paragraph vectors. Its training criterion and decision component were the same as our proposed
method.

Logistic regression and SVM: These two models replaced the similarity-based decision introduced
in Section 4.1 with a logistic regression classifier or a SVM classifier. These classifiers were trained
separately after the memory vector for pooling was estimated.

The left part of Table 3 shows the results of these ablated models. By changing input from dialogue
to monologue, the accuracy dropped 1.8%, indicating that utterances from interviewers also benefitted
our method. Although the structure of our trainable pooling layer was much simpler than [CLS] pooling,
our method still performed slightly better than the [CLS] pooling method. When logistic regression
and SVM classifiers were built instead of similarity-based decision, the accuracy dropped 1.2% at least.
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w/o DA Accuracy(%) with DA Accuracy(%)
Our method 78.2(2.16) Our method 81.6(1.78)
Monologue 76.4(1.96) - CRbi 80.8(2.59)
[CLS] pooling 77.5(1.89) - all CRs 73.3(2.28)
Logistic regression 77.0(1.75) - lossae 79.8(1.75)
SVM 76.5(2.36) - joint training 80.3(1.70)

Table 3: Results of ablation studies. DA stands for cross-lingual data augmentation.

These results demonstrate the effectiveness of both the pooling layer and the decision component in our
proposed contrastive learning method for AD detection.

5.4.2 Models with Cross-lingual Data Augmentation
Several ablated models were built to evaluate the effects of the following components in our proposed
cross-lingual data augmentation method.

Contrastive regularizers: First, we removed the cross-lingual contrastive regularizer CRbi, for test-
ing the model’s performance with only monolingual contrastive regularizers. Then, all three contrastive
regularizers were removed, which means that only the parallel datset was utilized to learn all model
parameters.

Autoencoder loss: In contrast to removing contrastive regularizers, the autoencoder loss defined in
Eq. (4) was discarded to train an ablated model. Here, the parallel corpus was not necessary anymore.

Training strategy: In our proposed method, the pooling parameters and the autoencoders are trained
jointly. An ablated model was built to test the performance of training them separately. First, we used
the two AD datasets and the terms of CRe and CRc in Eq. (5) to train the pooling parameters of each
language respectively. Then, the parallel dataset and the two AD datasets were employed simultaneously
to train the autoencoders with the terms of CRbi and lossae in Eq. (5).

The right part of Table 3 shows the results of these ablated models. We can see that CRe and CRc

played more important roles than CRbi in our proposed method. The accuracy only dropped 0.8%
after removing CRbi, while it dropped 8.3% when removing all three contrastive regularizers. Without
autoencoder loss, the accuracy dropped 1.8%. Its performance was still 1.6% better than our proposed
method without data augmentation. This implies that our proposed cross-lingual data augmentation
method is still effective even when a large parallel corpus is not available. Finally, jointly training
pooling parameters and autoencoders achieved better performance than training them separately.

5.5 Influences of the Size of Mandarin AD Corpus
An experiment was conducted to explore influences of the size of Mandarin AD corpus on our proposed
method with cross-lingual data augmentation. 10 additional models were trained, and each reduced the
Mandarin AD corpus by 10% through random sampling. To overcome the randomness of data reduc-
tion, each model was trained 5 times and mean accuracy of the 5 trials was reported as its performance
measurement. The last model constructed a zero-shot learning scenario, which means that there was
no Mandarin AD training data at all and the model had to make decisions by cross-lingual knowledge
transfer.

We compared our method with the BERT(frozen) baseline and two machine translation baselines. The
results are shown in Figure 3. From this figure, we can see that our method consistently outperformed
the other three methods no matter what size the Mandarin AD corpus was. Under the zero-shot scenario,
our method still performed much better than random guessing, which demonstrates the effectiveness of
our method on cross-lingual knowledge transfer for AD detection.

5.6 Importance of Different Words
Inspired by previous study (Guo et al., 2019) which told different usage of words between AD patients
and controls by adopting a proportion test, we conducted an experiment to investigate importance of
different words on terms of the performance of our proposed method. Our autoencoder-based model
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Figure 3: Results of using Mandarin AD corpus with different sizes.

Figure 4: Accuracy decrements of masking every 10% words in the vocabulary. Words with high docu-
ment frequency get masked first.

with cross-lingual data augmentation was used in this experiment. At the inference stage, 10 groups of
decision results were generated which masked the words with high document frequency gradually. The
document frequency of a word is defined as the percentage of documents in which the word appears. The
higher document frequency a word has, more common the word is. For example, words like “and”, “the”,
“is” are typical common words and usually have higher document frequency than words like “faucet”
and “puddle”. In each group, we found the top 10% words with the highest document frequency in the
vocabulary of the Mandarin AD corpus, and replaced their embeddings with the “MASK” embedding
of BERT and then removed them from the vocabulary. Afterward, we got the paragraph vectors of test
samples and made similarity-based predictions.

Accuracy decrements of masking every 10% words in the vocabulary are shown in Figure 4. We can
see that the performance of our method got slightly hurt when masking the words with top 10% or 20%
document frequency. The accuracy dropped seriously when the words with top 60% document frequency
were masked. This implies that all words didn’t contribute equally. Our method relied on the words with
middle document frequency more than the ones with high document frequency for AD detection.

6 Conclusions

This paper first presents a contrastive learning method to study effective text representations from small
corpus for AD detection. This method contains a BERT feature extractor and a trainable pooling layer.
It adopts similarity-based decision, which performed better than building separate classifiers in our ex-
periments on a Mandarin AD corpus. An autoencoder-based cross-lingual data augmentation method is
further proposed for utilizing another English AD corpus to improve model performance on the Man-
darin one. This method outperformed other cross-lingual data augmentation methods, achieving a best
accuracy of 81.6% in our experiments. Exploring more effective pretrained models and better methods
for learning bilingual text representations will be the task of our future work.
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