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Abstract 

Text summarization aims to compress a textual document to a short summary while keeping 
salient information. Extractive approaches are widely used in text summarization because of 
their fluency and efficiency. However, most of existing extractive models hardly capture inter-
sentence relationships, particularly in long documents. They also often ignore the effect of 
topical information on capturing important contents. To address these issues, this paper proposes 
a graph neural network (GNN)-based extractive summarization model, enabling to capture inter-
sentence relationships efficiently via graph-structured document representation. Moreover, our 
model integrates a joint neural topic model (NTM) to discover latent topics, which can provide 
document-level features for sentence selection. The experimental results demonstrate that our 
model not only substantially achieves state-of-the-art results on CNN/DM and NYT datasets 
but also considerably outperforms existing approaches on scientific paper datasets consisting of 
much longer documents, indicating its better robustness in document genres and lengths. Further 
discussions show that topical information can help the model preselect salient contents from an 
entire document, which interprets its effectiveness in long document summarization. 

1 Introduction 

Text summarization is an important task in natural language processing, which can help people rapidly 
acquire important information from a large sum of documents. Previous summarization approaches can 
be mainly classified into two categories, which are abstractive and extractive. Neural-based abstractive 
models usually use a seq2seq framework (Sutskever et al., 2014) to generate a word-by-word summary 
after encoding a full document. By contrast, extractive models directly select important sentences from 
the original document and then aggregate them into a summary. Abstractive models are generally more 
flexible but may produce disfluent or ungrammatical summary texts (Liu and Lapata, 2019b), whereas 
extractive models have advantages in factuality and efficiency (Cao et al., 2018). 

Despite their success, modeling long-range inter-sentence relationships for summarization remains a 
challenge (Xu et al., 2019b). Hierarchical networks are usually applied to tackle this problem by 
modeling a document as a sequence of sequences (Cohan et al., 2018; Zhang et al., 2019). However, 
empirical observations (Liu and Lapata, 2019a) showed that the use of such a paradigm to model inter-
sentence relationships does not provide much performance gain for summarization. Hierarchical 
approaches are also slow to train and tend to overfit (Xiao and Carenini, 2019). Most recently, Graph 
Neural Networks (GNNs) are widely explored to model cross-sentence relationships for summarization 
task. The critical step of this framework is to build an effective document graph. Several studies (Xu et 
al., 2019a; Yasunaga et al., 2017) built document graphs based on discourse analysis. However, this 
approach depends on external tools and may lead to other problems, such as semantically fragmented 
output (Liu et al., 2019). Wang and Liu (2020) built a word–sentence document graph based on word 
appearance, but such statistical graph-building approach hardly captures semantic-level relationships. 
Therefore, how to model a document as a graph for summarization effectively remains an open question. 
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Another critical point of summarization is modeling global information, which plays a key role in 
sentence selection (Xiao and Carenini, 2019). Pre-trained language models can considerably boost the 
performance of summarization (Liu and Lapata, 2019a; Zhang et al., 2019) since they effectively capture 
context features. However, they are poor at modeling document-level information, particularly for long 
documents, because most of them are designed for sentences or a short paragraph (Xu et al., 2019b). 

To tackle the abovementioned weaknesses, this paper proposes a novel graph-based extractive 
summarization model. First, we encode an entire document with a pre-trained BERT (Devlin et al., 2019) 
to learn contextual sentence representations, and discover latent topics with a joint neural topic model 
(NTM; Miao et al., 2017; Srivastava and Sutton, 2017). Second, we build a heterogeneous document 
graph consisting of sentence and topic nodes, and simultaneously update their representations with a 
modified graph attention network (GAT; Veličković et al., 2017). Third, the representations of sentence 
nodes are extracted to compute the final labels. Intuitively, our topic–sentence document graph has the 
following advantages: 1) During the graph propagation, sentence representations can be enriched by 
topical information, which can be considered as a kind of document-level feature and help our model 
distil important contents from an entire document. 2) Topic nodes can act as intermediary to bridge long-
distance sentences; hence, our model can efficiently capture inter-sentence relationships. We evaluate 
our model on four standard datasets, including news articles and scientific papers. The experimental 
results show its effectiveness and superiority. To summarize, our contributions are threefold. 

• We conduct a quantitative exploration on the effect of latent topics on document summarization 
and provide an intuitive understanding of how topical information help summarize documents. 

• We propose a novel graph-based neural extractive summarization model, which innovatively 
incorporates latent topics into graph propagation via a joint neural topic model. To the best of our 
knowledge, we are the first to propose applying NTM to the extractive text summarization task. 

• The experimental results demonstrate that our proposed model not only achieves competitive 
results compared with state-of-the-art extractive models on news datasets but also considerably 
outperforms existing approaches on scientific paper datasets consisting of much longer documents, 
indicating its better robustness in document genres and lengths. 

2 Related Work 

Neural Extractive Summarization    Neural networks have achieved remarkable results in 
extractive summarization. Existing works mainly regard extractive summarization as a sequence 
labeling task (Nallapati et al., 2017; Zhang et al., 2018; Dong et al., 2018) or sentence ranking task 
(Narayan et al., 2018). Pre-trained language models have provided substantial performance gain for 
summarization (Liu and Lapata, 2019a; Zhang et al., 2019; Xu et al., 2019). In the current work, we 
further model inter-sentence relationships with a graph encoder and enrich sentence representations with 
topical information after a BERT encoder. 
Graph-based Summarization    Early works, such as TextRank (Mihalcea and Tarau, 2004) and 
LexRank (Erkan and Radev, 2004), built document graphs on the basis of inter-sentence similarity and 
extracted summary sentences in an unsupervised manner. Recently, the application of GNNs to 
document summarization has attracted considerable interests (Yasunaga et al., 2017; Xu et al., 2019b; 
Fernandes et al., 2018; Wang and Liu et al., 2020). Existing GNN-based summarization models build 
document graphs on the basis of only words or sentences. On the contrary, we explore the effects of 
high-level semantic units, i.e., latent topics. 
Topic Modeling for Summarization    Topic modeling is a powerful approach to learning document 
features. However, it has been rarely applied to document summarization. Wei et al. (2012) proposed to 
build a document graph consisting of words, sentences, and topic nodes and learn the graph with Markov 
chain. Zheng et al. (2019) proposed to summarize multiple documents by mining cross-document 
subtopics. Narayan et al. (2018) recommended enriching word representation with topical information. 
Unlike them, we discover latent topics with a neural topic model together with summarization. To the 
best of our knowledge, NTM had never been applied to extractive summarization task. 
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Figure 1. Overall architecture of our model (Topic-GraphSum). In the graph attention layer (top right), 
the square nodes denote the sentence representations output from the document encoder (bottom right), 
and the circular nodes denote the topic representations learned by NTM (left). 

3 Model 

This section describes our model, namely, topic-aware graph neural network for document 
summarization (Topic-GraphSum). Figure 1 presents the overview architecture. Given an arbitrary 
document 𝐷𝐷 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑁𝑁} that consists of 𝑁𝑁 sentences, the objective of our model is to learn a 
sequence of binary labels {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑁𝑁}, where 𝑦𝑦𝑖𝑖ϵ{0, 1} represents whether the 𝑖𝑖-th sentence should 
be included in summary. Our model generally consists of three parts, which are the 1) document 
encoder, 2) neural topic model, and 3) graph attention layer. Given the input document, the document 
encoder learns contextual representations of each sentence with a pre-trained BERT. The NTM aims to 
learn the document topic distribution and a group of topic representations. The graph attention layer 
builds a heterogeneous document graph with topics and sentences and then simultaneously update their 
node representations. After graph encoding, sentence representations are further combined with topics 
and then sent to a sentence classifier to compute the final labels. We elucidate each part below. 

3.1 Document Encoder 

BERT is a bidirectional transformer encoder pre-trained with a large corpus. Similar to previous works 
(Xu et al., 2019b; Liu and Lapata, 2019a), we employ a modified version of BERT to generates local 
context-aware hidden representations of sentences. Specifically, we insert < 𝐶𝐶𝐶𝐶𝐶𝐶 >  and < 𝐶𝐶𝑆𝑆𝑆𝑆 > 
tokens at the beginning and end of each sentence, respectively. Then, we put all tokens into BERT layer 
and learn their hidden states. 

 �ℎ1,0, ℎ1,1, … , ℎ𝑁𝑁,0, … , ℎ𝑁𝑁,∗� = 𝐵𝐵𝑆𝑆𝐵𝐵𝐵𝐵�𝑤𝑤1,0,𝑤𝑤1,1, … ,𝑤𝑤𝑁𝑁,0, … ,𝑤𝑤𝑁𝑁,∗�, (1) 

where 𝑤𝑤𝑖𝑖,𝑗𝑗 represents the 𝑗𝑗-th word of the 𝑖𝑖-th sentence. 𝑤𝑤𝑖𝑖,0 and 𝑤𝑤𝑖𝑖,∗ represent the < 𝐶𝐶𝐶𝐶𝐶𝐶 > and 
< 𝐶𝐶𝑆𝑆𝑆𝑆 > tokens of the 𝑖𝑖-th sentence, and ℎ𝑖𝑖,𝑗𝑗 represents the hidden state of the corresponding token. 

After the BERT encoding, we regard the hidden states of < 𝐶𝐶𝐶𝐶𝐶𝐶 > : 𝑯𝑯𝑩𝑩 = {ℎ1,0, … , ℎ𝑁𝑁,0}  as the 
corresponding sentence contextual representations, which will be further enriched by topic information. 

3.2 Neural Topic Model 

NTM is based on the Variational Autoencoder (VAE; Kingma and Welling, 2013) framework. It learns 
the latent topic via an encoding–decoding process. Let 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏 ∈ ℝ|𝑉𝑉| be the bag-of-words representation 
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of a given document, where 𝑉𝑉 is the vocabulary. In the encoder, we have 𝜇𝜇 = 𝑓𝑓𝜇𝜇(𝑥𝑥), 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑓𝑓𝜎𝜎(𝑥𝑥), 
where 𝜇𝜇 and 𝑙𝑙 are the prior parameters for parameterizing topic distribution in decoder networks. 
Functions 𝑓𝑓𝜇𝜇 and 𝑓𝑓𝜎𝜎 are linear transformations with ReLU activation. 

The decoder can be regarded as a three-step document generation process. First, we employ Gaussian 
softmax (Miao et al., 2017) to draw topic distribution, i.e., 𝑧𝑧 ∼ 𝒩𝒩(𝜇𝜇,𝑙𝑙2),𝜃𝜃 = 𝑠𝑠𝑙𝑙𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(𝑧𝑧), where 𝑧𝑧 
is the latent topic variable, 𝜃𝜃 ∈ ℝ𝐾𝐾 is the topic distribution, and 𝐾𝐾 is the predefined topic number. 
Second, we learn the probability of predicted words 𝑝𝑝𝑏𝑏 ∈ ℝ|𝑉𝑉|  throughout 𝑝𝑝𝑏𝑏 = 𝑠𝑠𝑙𝑙𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(𝑊𝑊∅𝜃𝜃) . 
𝑊𝑊∅ ∈ ℝ|𝑉𝑉|×𝐾𝐾 is analogous to the topic–word distribution matrix in LDA-style topic models, and 𝑊𝑊∅

(𝑖𝑖,𝑗𝑗) 
represents the relevance between the 𝑖𝑖-th word and j-th topic. Finally, we draw each word from 𝑝𝑝𝑏𝑏 to 
reconstruct input 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏. We leave out the details and refer the readers to Miao et al. (2017).  

Considering the intermediate parameters 𝑊𝑊∅ and 𝜃𝜃 have encoded topical information, we further 
use them to build topic representations as follows:  

 𝑯𝑯𝑻𝑻 = 𝑓𝑓∅�𝑊𝑊∅
𝑇𝑇�, (2) 

 𝐵𝐵𝑑𝑑 = � 𝜃𝜃(𝑖𝑖)𝑯𝑯𝑻𝑻
(𝑖𝑖)

1≤𝑖𝑖≤𝐾𝐾
, (3) 

where 𝑯𝑯𝑻𝑻 ∈ ℝ𝐾𝐾×𝑑𝑑𝑡𝑡  represents a group of topic representations with a predefined dimension of 𝑑𝑑𝑡𝑡, and 
𝑓𝑓∅  is a linear transformation with ReLU activation. 𝐵𝐵𝑑𝑑 ∈ ℝ𝑑𝑑𝑡𝑡   is the weighted sum of each topic 
representation, which can be regarded as the overall topic representation of document. 
𝑯𝑯𝑻𝑻  and 𝐵𝐵𝑑𝑑  are used in the graph attention layer to enrich sentence representation. Other 

summarization approaches (Zheng et al., 2019; Narayan et al., 2018) with topical information learn topic 
as a fixed feature from an external model. In comparison with them, the latent topic of our model is 
learned via a neural approach and can be dynamically updated with entire networks.  

3.3 Graph Attention Layer 

Graph Building    Let 𝐺𝐺 = {𝑉𝑉,𝑆𝑆} represent an arbitrary graph, where 𝑉𝑉 represents the node set 
and 𝑆𝑆 represents the edge set. Formally, our undirected graph can be defined as.𝑉𝑉 = 𝑉𝑉𝑆𝑆 ∪ 𝑉𝑉𝑇𝑇;  𝑆𝑆 =
�𝑒𝑒1,1, … , 𝑒𝑒𝑁𝑁,𝐾𝐾� , where 𝑉𝑉𝑠𝑠 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑁𝑁}  stands for 𝑁𝑁  sentence nodes and 𝑉𝑉𝑇𝑇 = {𝐵𝐵1,𝐵𝐵2 … ,𝐵𝐵𝐾𝐾} 
stands for 𝐾𝐾 topic nodes. 𝑒𝑒𝑖𝑖,𝑗𝑗 represents the edge between the 𝑖𝑖-th sentence and 𝑗𝑗-th topic, indicating 
that our document graph is bipartite. 
Graph Propagation    We initialize the vectors of sentence nodes and that of topic nodes with 𝑯𝑯𝑩𝑩 
learned from the document encoder and 𝑯𝑯𝑻𝑻 learned from NTM (Eq. 2), respectively. Then, we update 
node representations with graph attention network, which can be denoted as: 

 𝑧𝑧𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝑒𝑒𝑠𝑠𝐿𝐿𝑙𝑙𝑦𝑦𝐵𝐵𝑒𝑒𝐶𝐶𝐿𝐿�𝑊𝑊𝑎𝑎�𝑊𝑊𝑒𝑒ℎ𝑖𝑖;𝑊𝑊𝑒𝑒ℎ𝑗𝑗��, (4) 

 
𝛼𝛼𝑖𝑖,𝑗𝑗 =

𝑒𝑒𝑥𝑥𝑝𝑝�𝑧𝑧𝑖𝑖,𝑗𝑗�
∑ 𝑒𝑒𝑥𝑥𝑝𝑝�𝑧𝑧𝑖𝑖,𝑙𝑙�𝑙𝑙∈𝒩𝒩𝑖𝑖

, (5) 

 𝑢𝑢𝑖𝑖 = � 𝑠𝑠𝑠𝑠𝑡𝑡ℎ�𝛼𝛼𝑖𝑖,𝑗𝑗𝑊𝑊𝑐𝑐ℎ𝑗𝑗�
𝑗𝑗∈𝒩𝒩𝑖𝑖

, (6) 

 
ℎ𝑖𝑖′ = ||𝑚𝑚=1

𝑀𝑀 � 𝑠𝑠𝑠𝑠𝑡𝑡ℎ�𝛼𝛼𝑖𝑖,𝑗𝑗𝑚𝑚𝑊𝑊𝑐𝑐
𝑚𝑚ℎ𝑗𝑗�

𝑗𝑗∈𝒩𝒩𝑖𝑖
, (7) 

where ℎ𝑖𝑖 is the 𝑖𝑖-th node representation, and 𝒩𝒩𝑖𝑖 represents its neighbor nodes. ∥∗ represents multi-
heads concatenation. 𝑊𝑊𝑎𝑎, 𝑊𝑊𝑒𝑒, and 𝑊𝑊𝑐𝑐 are model trainable parameters. 

The vanilla GAT is designed for homogeneous graphs. However, our document graph is 
heterogeneous because the sentence and topic should be considered different semantic units; hence, we 
need to make some adaptation. Inspired by Hu et al. (2019), we consider a convenient approach to 
project the topic and sentence representations into an implicit common space, in which we calculate the 
attention weight. Let ℎ𝑖𝑖 be the 𝑖𝑖-th sentence node and ℎ𝑗𝑗 be the 𝑗𝑗-th topic node. We modify Eq. 4 by 
replacing shared matrix 𝑊𝑊𝑒𝑒 with different projection functions, as shown as follows: 
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 𝑧𝑧𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝑒𝑒𝑠𝑠𝐿𝐿𝑙𝑙𝑦𝑦𝐵𝐵𝑒𝑒𝐶𝐶𝐿𝐿�𝑊𝑊𝑎𝑎�𝑓𝑓𝑆𝑆(ℎ𝑖𝑖);𝑓𝑓𝑇𝑇(ℎ𝑗𝑗)��, (8) 

where 𝑓𝑓𝑆𝑆 and 𝑓𝑓𝑇𝑇 are the nonlinear transformation functions to project sentence and topic nodes to a 
common vector space, respectively. 

The graph attention layer can build semantic relationships between sentences and topics. For example, 
during graph propagation, sentences can enrich their representation with topical information, which can 
be regarded as a global feature. Topics can capture their related sentences and distil salient contents from 
an entire document by their different topical relevance. Meanwhile, topic nodes can act as intermediary 
to help build inter-sentence relationships because they are high-level semantic units across sentences. 

After graph encoding, we obtain topic-sensitive sentence representations. We concatenate them with 
overall topic representation 𝐵𝐵𝑑𝑑 (Eq. 3) to further capture their topical relevance to the document. Then, 
we choose a single feed-forward layer as the sentence classifier1 to predict the final labels, i.e., 𝑦𝑦�𝑖𝑖 =
𝑙𝑙([ℎ𝑖𝑖:𝐵𝐵𝑑𝑑]), where 𝑙𝑙(∗) is the sigmoid function. 

3.4 Joint Training 

We jointly train NTM and sentence classifier. For the NTM, the objective function is defined as the 
negative evidence lower bound, as shown as follows: 

 ℒ𝑁𝑁𝑇𝑇𝑀𝑀 = 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝(𝑧𝑧)||𝑞𝑞(𝑧𝑧|𝑥𝑥)) − 𝔼𝔼𝑞𝑞(𝑧𝑧|𝑥𝑥)[𝑝𝑝(𝑥𝑥|𝑧𝑧)], (9) 

where the first term indicates the Kullback–Leibler divergence loss, and the second term indicates the 
reconstruction loss. 𝑞𝑞(𝑧𝑧|𝑥𝑥) and 𝑝𝑝(𝑥𝑥|𝑧𝑧) represent the encoder and decoder networks, respectively. 

The binary cross-entropy loss of the sentence classifier is expressed as: 

 ℒ𝑆𝑆𝑆𝑆 = � (𝑦𝑦𝑖𝑖 log(y�i) + (1 − 𝑦𝑦𝑖𝑖)log (1 − 𝑦𝑦�𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
, (10) 

The final loss of our model is the linear combination of two parts of loss with hyperparameter 𝜆𝜆 to 
balance their weights, i.e., 

 ℒ = ℒ𝑆𝑆𝑆𝑆 + 𝜆𝜆ℒ𝑁𝑁𝑇𝑇𝑀𝑀. (11) 

4 Experimental Setup 

4.1 Datasets 

We conduct experiments on four datasets, including two document types, which are news article and 
scientific paper. The summarization of news articles has been widely explored, but that of much longer 
scientific papers is more challenging since accurately encoding long texts for summarization is a known 
challenge (Vaswani et al., 2017; Frermann and Klementiev, 2019). Therefore, we conduct experiments 
on scientific paper datasets to verify the generalization capability of our model for long documents. The 
detailed statistics of four datasets is summarized in Table 1. 
 

Datasets Source # Docs # Avg. Tokens 
Train Val Test Doc. Sum. 

CNN News 90,266 1,220 1,093 761 46 
Daily Mail News 196,961 12,148 10,397 653 55 

NYT News 96,834 4,000 3,452 800 46 
arXiv Scientific Paper 203,037 6,436 6,440 4,938 220 

PubMed Scientific Paper 119,924 6,633 6,658 3,016 203 
 

Table 1: Statistics of four datasets: split size, average tokens of document and summary. 

 
1 We also tried adding more advanced classifiers (e.g., CNN and RNN) on top of GAT layer. However, the performance 
shows no substantial gain, indicating that our model has already learned sufficient features. 
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CNN/DailyMail (Hermann et al., 2015) is the most widely used standard dataset for document 
summarization. We use standard splits and preprocess data in accordance with previous works (See et 
al., 2017; Liu and Lapata, 2019a; Wang and Liu, 2020). 
NYT (Sandhaus, 2008) is another popular summarization dataset. It is collected from New York Times 
Annotated Corpus. We preprocess and divide this dataset according to Durrett et al. (2016). 
arXiv and PubMed (Cohan et al., 2018) are two newly constructed datasets for long document 
summarization, which are collected from arXiv.org and PubMed.com, respectively. Xiao and Carenini 
(2019) created oracle labels for the two datasets. We use the same split as that of Cohan et al. (2018). 

4.2 Models for Comparison 

NeuSum (Zhou et al., 2018) is a neural extractive model based on seq2seq framework with attention 
mechanism.  
BanditSum (Dong et al., 2018) regards sentence selection as a contextual bandit problem. Policy 
gradient methods are used to train the model. 
JECS (Xu and Durrett, 2019) is a compression-based summarization model that selects sentences and 
compresses them by pruning a dependency tree to reduce redundancy. 
BERTSUM (Liu and Lapta, 2019a) inserts multiple segmentation tokens into document to obtain each 
sentence representation. It is the first BERT-based extractive summarization model. We employ its 
framework as the basic document encoder of our model. 
HiBERT (Zhang et al., 2019) modifies BERT into a hierarchical structure and design an unsupervised 
method to pre-train it. 
DISCOBERT (Xu et al., 2019b) is a state-of-the-art BERT-based extractive model which encodes 
documents with BERT and then updates sentence representations with a graph encoder. DISCOBERT 
builds a document graph with only sentence units based on discourse analysis, whereas our model 
incorporates latent topics into a document graph and produce a heterogeneous bipartite graph. 

4.3 Implementation Details 

Hyperparameters    For the document encoder, we use “bert-base-uncased” as our pre-trained BERT 
version and fine-tune it for all experiments. We also implement a non-BERT version of our model by 
replacing the pre-trained BERT with a Bi-GRU (Chung et al., 2014) layer and set its hidden size to 768 
to compare with baseline approaches without pre-trained language models fairly. For NTM, we set topic 
number K=50. The dimension size of topic representation is set to 512. We implement GNNs with DGL 
(Wang et al., 2019b), and the number of GAT layer is set to 2. We set the number of attention heads to 
4 for topic nodes and 6 for sentence nodes with the same hidden size of 128 to keep the dimension size 
of node representations unchanged. We train our model for 500 epochs with 2 NVIDIA V100 cards, and 
the batch size is set to 8. Except for the pre-trained BERT encoder, other parameters are randomly 
initialized and optimized using Adam (Kingma and Ba, 2014). 𝜆𝜆 (Eq. 11) is set to 0.85 to balance the 
loss of topic modeling and sentence selection. All the hyperparameters are selected via grid search on 
the validation set with “Rouge-2” as metric. 
Training Strategy    We consider some empirical training strategies similar with (Cui et al., 2019) to 
make our model efficiently converge. Specifically, we pre-train NTM for 200 epochs with a learning 
rate of 1e-3, considering its convergence speed is much slower than that of general neural networks. In 
joint training, the NTM parameters are trained with a learning rate of 5e-4, while the learning rate of 
other parameters is set to 1e-3 because the NTM is relatively stable. 

5 Result and Analysis 

This section reports our experimental results. We evaluate our model on two criteria: 1) Whether it can 
achieve state-of-the-art results? 2) What benefits does the latent topic contribute to summarization? To 
this end, we first compare our model with state-of-the-art approaches on two widely used benchmark 
datasets CNN/DM and NYT. Then, we evaluate our model on two scientific paper datasets to verify 
whether discovering latent topics can help summarize long documents. Lastly, we present ablation and 
case studies for further analysis. 
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5.1 Overall Performance 

Table 2 presents the Rouge F1 results of different models on CNN/DM and NYT datasets. The first 
section reports the Lead-3 and Oracle; the second section reports the approaches without pre-trained 
language models; the third section reports BERT-based models; and the last section reports our models. 
From the results, we make the following observations. (1) When removing pre-trained language model, 
the Bi-GRU version of our model outperforms all non-BERT baseline models and obtains competitive 
results compared with basic BERT on both datasets. (2) Our model achieves state-of-the-art results on 
NYT dataset, and its performance on CNN/DM dataset is on par with DISCOBERT, which is a state-of-
the-art BERT-based extractive summarization model. It needs to mention that DISCOBERT relies on 
external discourse analysis for modeling long-range dependencies. Our model achieves highly 
competitive results without external tools, which proves its inherent superiority. 

 

Model CNN/DM NYT 
R-1 R-2 R-L R-1 R-2 R-L 

Lead-3 40.42 17.62 36.67 41.80 22.60 35.00 
Oracle 55.61 32.84 51.88 64.22 44.57 57.27 

NeuSum (Zhou et al., 2018) 41.59 19.01 37.98 – – – 
BanditSum (Dong et al., 2018) 41.50 18.70 37.60 – – – 
JECS (Xu and Durrett, 2019) 41.70 18.50 37.90 45.50 25.30 38.20 
BERT (Zhang et al., 2019) 41.82 19.48 38.30 48.38 29.04 40.53 

BERTSUM (Liu and Lapata, 2019) 43.25 20.24 39.63 – – – 
HiBERT (Zhang et al., 2019) 42.37 19.95 38.83 49.06 29.70 41.23 

DISCOBERT (Xu et al., 2019) 43.77 20.85 40.67 50.00 30.38 42.70 
Topic-GraphSum (Bi-GRU) 41.93 19.15 38.22 47.90 28.51 39.86 

Topic-GraphSum 44.02 20.81 40.55 50.04 30.41 42.77 
 
Table 2: Rouge F1 results on the test set of CNN/DM and NYT datasets. The results of comparison 
models are obtained from respective papers, and – represents that corresponding result is not reported. 

5.2 Long Document Summarization 

Long documents typically cover multiple topics (Xiao and Carenini, 2019). We hypothesize that our 
model can capture important contents of an entire document by discovering latent topics, thus enhancing  
 

Model arXiv PubMed 
R-1 R-2 R-L R-1 R-2 R-L 

SumBasic* 29.47 6.95 26.30 37.15 11.36 33.43 
LexRank* 33.85 10.73 28.99 39.19 13.89 34.59 

LSA* 29.91 7.42 25.67 33.89 9.93 29.70 
Oracle+ 53.88 23.05 34.90 55.05 27.48 38.66 

SummaRuNNer+ 42.91 16.65 28.53 43.89 18.78 30.36 
Seq2seq–attentive+ 43.58 17.37 29.30 44.81 19.74 31.48 

Seq2seq-cancat+ 43.62 17.36 29.14 44.85 19.70 31.43 
Cheng & Lapata (2019)+ 42.24 15.97 27.88 43.89 18.53 30.17 

Attn-Seq2Seq* 29.30 6.00 25.56 31.55 8.52 27.38 
Pntr-Gen-Seq2Seq* 32.06 9.04 25.16 35.86 10.22 29.69 
Discourse-aware* 35.80 11.05 31.80 38.93 15.37 35.21 

Topic-GraphSum (Bi-GRU) 44.71 18.84 32.58 46.13 20.91 33.27 
Topic-GraphSum 46.05 19.97 33.61 48.85 21.76 35.19 

 
Table 3: Rouge F1 results on the test set of arXiv and PubMed datasets. Results with * are token from 
Cohan et al. (2018), and results with + are token from Xiao and Carenini (2019). 
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the summarization performance. To verify this hypothesis, we conduct additional experiments on long-
form documents. Table 3 presents the results of our model and state-of-the-art public summarization 
systems on arXiv and PubMed datasets. The first section includes traditional approaches and Oracle; the 
second and third sections include abstractive and extractive models, respectively. From Table 3, our 
model substantially outperforms baseline models by a large margin without pre-trained BERT, and the 
gaps further increase when combined with BERT. We note that discourse-aware model (Cohan et al., 
2018) slightly outperforms our model on R-L of PubMed dataset; a possible reason is that it explicitly 
leverages the section information (e.g., introduction and conclusion) of papers, which may be strong 
clues in selecting summary sentences. Our model achieves state-of-the-art performance on scientific 
paper datasets without additional features, indicating that discovering latent topics can indeed help 
summarize long document, consistent with aforementioned analysis. 

5.3 Ablation Study 

To analyze the relative contributions of different modules in summarizing documents, we compare our 
full model with three ablated variants: 1) w/o NTM, which removes the NTM module, builds a 
document graph with fully connected sentence nodes, and can be regarded as performing self-attention 
calculation on the top of BERT; 2) w/o GAT, which removes the graph attention layer, directly 
concatenates each of sentence representation with overall topic vector 𝐵𝐵𝑑𝑑 (Eq. 3), and sends them to 
the sentence classifier; and 3) LDA Version, which replaces NTM with standard LDA and randomly 
initializes each topic representation. 
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Figure 2. Rouge-1 and -2 results of our full model and three ablated variants on four datasets. 
 

Figure 2 shows the results of different variants on four datasets, from which we can make the 
following observations. 1) Our full model outperforms all variants on four datasets, which proves that 
each module is necessary and combining them can help our model achieve the best performance. 2) 
When NTM module is removed or using LDA instead, the performance on arXiv and PubMed datasets 
declines dramatically, whereas on CNN/DM and NYT datasets, the results are still competitive with our 
full model. A possible reason lies in that news documents are relatively short, which leads to the data 
sparsity problem and thus reduces the effect of topic models. 3) Similarly, when GAT is removed, the 
performance of scientific paper datasets has decreased more significantly than that of news datasets. 
This phenomenon indicates that inter-sentence relationships are especially important for summarizing 
long documents. 4) The LDA topic model can also boost the performance, but the gain of LDA is much 
fewer than that of NTM for long documents; a possible reason is that LDA and neural networks are 
inevitably disconnected, whereas NTM can be jointly optimized with the document encoder and graph 
networks, which can mutually improve each module (Wang et al., 2019). 

5.4 Analysis of Latent Topics 

In this subsection, we conduct experiments to better understand how latent topics help summarize 
documents. To this end, we define the topical weight of a sentence as the weighted summation of 
attention score between each topic and the sentence, i.e., 
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Figure 3. Visualized results of sentence topical weight. The degree of highlighting represents the overall 
relevance of the sentence and all topics. Underlined sentences are model-selected summary. The left 
document is from PubMed dataset, and the right document is from CNN/DM dataset. 
 

 𝐵𝐵𝑊𝑊𝑖𝑖 = �𝜃𝜃(𝑗𝑗)𝛼𝛼𝑗𝑗,𝑖𝑖

𝐾𝐾

𝑗𝑗=1

, (12) 

 
where 𝐵𝐵𝑊𝑊𝑖𝑖  represents the topical weight of the 𝑖𝑖 -th sentence.  𝜃𝜃  is the topic distribution of the 
document learned by NTM described in Section 3.2, and 𝜃𝜃(𝑗𝑗) represents the weight of 𝑗𝑗-th topic in 
document. 𝛼𝛼𝑗𝑗,𝑖𝑖 (Eq. 5) is the attention score from the j-th topic node to the i-th sentence node. 

Figure 3 shows two examples of visualized sentence topical weights. The ground-truth summary 
sentences have relatively high topical weights, and the final selected sentences highly overlap with these 
topical sentences. From such observation, we can have an intuitive understanding of how our model 
works. First, our model learns sentence representations and discovers latent topics, individually. Second, 
the graph attention layer builds semantic relationships between sentences and topics and then roughly 
selects important contents on the basis of topical information. Finally, our model accurately selects 
summary sentences by integrating all features, such as the topical relevance to the document, context 
information, and inter-sentence relationships. This process may explain why our model is effective for 
long documents. Latent topics can help our model preselect salient texts; thus, further selection can 
mainly focus on these fragments rather than entire document. 

6 Conclusion and Future Work 

In this paper, we systematically explore the effects of latent topics for document summarization, and 
propose a novel graph-based extractive summarization model, which allows joint learning of latent 
topics and leverages them to enrich sentence representations via a heterogeneous graph neural network. 
The experimental results on four well-studied datasets demonstrate that our model not only achieves 
results on par with state-of-the-art summarization models on news article datasets but also significantly 
outperforms existing approaches on scientific paper datasets, indicating its strong robustness in various 
document genres and lengths. Further explorations on incorporating more types of semantic units (e.g. 
keywords and entities) into document graph for enhancing the performance of summarization will be 
addressed in our future work. 
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