
Proceedings of the 28th International Conference on Computational Linguistics, pages 4835–4846
Barcelona, Spain (Online), December 8-13, 2020

4835

Predicting Clickbait Strength in Online Social Media

Vijayasaradhi Indurthi∗, Bakhtiyar Syed, Manish Gupta†, Vasudeva Varma
IIIT Hyderabad, India

{vijaya.saradhi,syed.b}@research.iiit.ac.in
{manish.gupta,vv}@iiit.ac.in

Abstract

Hoping for a large number of clicks and potentially high social shares, journalists of various
news media outlets publish sensationalist headlines on social media. These headlines lure the
readers to click on them and satisfy the curiosity gap in their mind. Low quality material pointed
to by clickbaits leads to time wastage and annoyance for users. Even for enterprises publishing
clickbaits, it hurts more than it helps as it erodes user trust, attracts wrong visitors, and produces
negative signals for ranking algorithms. Hence, identifying and flagging clickbait titles is very
essential. Previous work on clickbaits has majorly focused on binary classification of clickbait
titles. However not all clickbaits are equally clickbaity. It is not only essential to identify a click-
bait, but also to identify the intensity of the clickbait based on the strength of the clickbait. In this
work, we model clickbait strength prediction as a regression problem. While previous methods
have relied on traditional machine learning or vanilla recurrent neural networks, we rigorously
investigate the use of transformers for clickbait strength prediction. On a benchmark dataset with
∼39K posts, our methods outperform all the existing methods in the Clickbait Challenge1.

1 INTRODUCTION

Clickbait refers to those sensational, provocative or controversial posts which appear to be informative
and objective, but are designed to entice its readers into clicking the link accompanying with the post.
Fig. 1 shows popular clickbait types with examples.

According to a survey of 53 Stanford students, 96.2 percent of Stanford students encounter clickbait
articles on the Internet at least once per day2. Rony et al. (2017) estimate that 19.46% of headlines were
“clickbait” in 2014; 23.73% in 2015; and 25.27% in 2016. Beyond the increased prevalence, clickbait is
also a challenge across multiple modes of data, text, images and even videos3.

The economic model of the contemporary online news industry (Dvorkin, 2015) incentivizes more
content views. A report by the Columbia Journalism Review highlighted the case of online magazine
Slant, which pays writers $100 per month, plus $5 for every 500 clicks on their stories. This clearly
motivates journalists to write catchy and suspenseful headlines. Table 1 lists some of the popular social
media outlets publishing clickbait content and their followers. The numbers are indicative of how much
people are easily falling to the bait.

Cognitively, human minds have a tendency to satisfy and bridge their curiosity gap by clicking on
the link. Marketing companies have been using clickbaits to attract and engage more number of users
resulting in getting more page views. Websites need more page views to promote their content or to
create more opportunities to show advertisements which increase their revenue. Moreoever, it is a well

This work is licensed under a Creative Commons Attribution 4.0 International License.
License details: http://creativecommons.org/licenses/by/4.0/.

∗The author is also a research engineer at Teradata.
†The author is also an applied researcher at Microsoft.

1https://webis.de/events/clickbait-challenge/shared-task.html
2https://www.stanforddaily.com/2017/03/20/clickbait-and-conscientiousness/
3https://www.cjr.org/analysis/the mission sounds simple pay.php

4836

Publisher Followers Link
BuzzFeed 12M https://www.fb.com/pg/BuzzFeed/
Upworthy 11M https://www.fb.com/pg/Upworthy/
ViralStories 8.5M https://www.fb.com/pg/DailyViralStories/
ScoopWhoop 4.7M https://www.fb.com/pg/Scoopwhoop/
BuzzFeed India 3M https://www.fb.com/pg/BuzzFeedIndia/
ViralNova 2.4M https://www.fb.com/pg/ViralNova/

Table 1: Some of the popular social media outlets publishing clickbait and followers of their Facebook
pages (as on 1st April 2020)

known fact that clickbaity content has a higher likelihood of being socially shared leading to more page
views.

Clickbaits play with human psychology and sometimes are a wastage of time. They create a curios-
ity gap for the users through the short post, but do not make judicious attempt to fill it in the clicked
article, thereby creating an information void. It is quite annoying to have social feeds spammed by
over-promising headlines that lead users to under-delivering half-stories. Even for enterprises which use
clickbaits for effective marketing, clickbaits are hurtful more than being helpful for the following rea-
sons: (1) misleading clickbait damages brands and erodes user trust, (2) clickbaits attract wrong visitors
rather than interested ones, (3) user interaction with clickbaits produces negative signals for ranking al-
gorithms, (4) clickbait muddles the website’s important data, and (5) sensationalism is now seen as more
disappointing by smart users.

• Shocking/ amazing/ unbelievable results
• Man Tries to Hug a Wild Lion, You Won’t Believe What Happens Next!
• Mycha started drinking two glasses of bitter-guard juice everyday for seven days and the results are amazing.

• Celebrity gossips
• Remember the baby who played the role of ‘baby’ in the movie ‘Babies grow up’? This is how he looks now! Absolutely hot!
• 21 stars who ruined their face due to plastic surgery. Talk about regrets!

• Mysterious stories
• Man divorced his wife after knowing what is in this photo
• A school girl gave her lunch to a homeless man. What he did next will leave you in tears!

• Instances of people’s stupidity on social media
• 15 hilarious tweets of stupid people that makes you think ‘Do these people even exist?’
• 14 Incredibly Stupid Social Media Posts By Famous People

• A challenge to your IQ
• Can you solve this ancient riddle? 90% people gave the wrong answer.
• Only the people with an IQ above 160 can solve these questions. Are you one of them? Click to find out…

• ‘Tricky’ stuffs
• Supermodels apply these three simple tricks to look young. Click to know what they are.
• Girls won’t be able to resist if you apply this simple trick

• The fear inducing stuff
• If your boyfriend cheating on you? … He is, if he does these five things.
• Six surprising common reasons you’re gaining weight, according to experts

• The list with a jewel stuff!
• 15 tweets that sum up married life perfectly. (number 13 is hilarious)
• 9 things noone knew about Princess Leia. Number 7 will blow your minds!

• Sports gossips
• La Liga superstar is set to join The Premier League giants. Fans are getting upset!
• Cristiano Ronaldo has finally spoken about Messi’s retirement announcement, and his words are rather shocking!

Figure 1: Clickbait Examples

Clickbait classification is a very subjective task. While there are some terrible headlines that qualify
as clear clickbaits (e.g., “You won’t believe what happened!”), there is also an enormous gray area4.
Since the very purpose of teaser message is to attract the attention of readers, every message containing
a link baits the user to click the link. The question is whether this baiting is perceived as immoderate or
deceptive by the reader (Potthast et al., 2017). Hence, in this work, we focus on the task of predicting
the intensity or degree of clickbaity-ness of an article rather than a vanilla binary classification.

Predicting the degree of clickbaity-ness is challenging as clickbaits are short headlines often written in
obscured ways which requires high-order semantic understanding. The strength of a clickbait could be
defined as a function of how much attention-grabbing the post is, and the gap between what is promised

4https://techcrunch.com/2016/09/25/wtf-is-clickbait/

4837

in the headline and what is delivered by the article linked from it. Both of these are difficult to measure
automatically. In most of the cases, we may need to predict clickbaity-ness just based on the content of
the post. Using the content alone brings in further challenges: (1) it is usually very short, (2) it is often
written in convoluted ways, and (3) it requires high-order semantic understanding, often with support of
facts from some knowledge base.

In this paper, we make the following main contributions.

• We build multiple regressor models using the current state-of-the-art word embeddings and evaluate
the performance of the classifiers over the current state-of-the art methods for clickbait strength
prediction.

• We present the first work to investigate application of transformer regression models for the clickbait
intensity prediction task.

• We augment transformer-based methods with multiple traditional machine learning regression
methods to further improve the regression performance.

• Our experiments with a benchmark dataset result into a new state-of-the-art for the clickbait inten-
sity prediction task.

2 Related Work

2.1 Clickbait Classification
The origin of clickbaits can be traced back to the advent of tabloid journalism. (Rowe, 2011; Blom and
Hansen, 2015; Chen et al., 2015) are some of the earliest studies on analysis of linguistic aspects of
clickbait, But they did not perform automatic classification. Most of the existing works on automated
clickbait detection have been done in the context of binary classification, i.e. predicting whether a given
news article’s title is a clickbait or not. Traditionally, feature engineering based methods have been
proposed (Biyani et al., 2016; Chakraborty et al., 2016; Wei and Wan, 2017). Feature sets include
content features, textual similarity features between the headline and the body, informality and forward
reference features, sentence structure features, word pattern features, clickbait language features and N-
gram features. Machine learning methods like Gradient Boosted Decision Trees (Biyani et al., 2016),
Support Vector Machine (SVM) classifier (Chakraborty et al., 2016), co-training (Wei and Wan, 2017)
are then use to leverage these features and train a classifier. Features for clickbait detection can be
derived from three sources: the teaser message or the post text, the linked article, and metadata for
both. While all reviewed approaches derive features from the teaser message, the linked article and
the metadata are considered only by (Potthast et al., 2016) and (Biyani et al., 2016). Besides the post
text, Zheng et al. (2017) additionally took the user behaviour information into consideration, to improve
the performance of clickbait detection on Chinese news articles. Also, recently deep learning techniques
have been proposed. Anand et al. (2017) and Rony et al. (2017) use bidirectional Recurrent Neural
Network (RNN) (Schuster and Paliwal, 1997) and fastText (Joulin et al., 2016) on word distributed
representations, respectively for clickbait detection.

Most of the initial efforts on clickbait detection focused only on news headlines. Recently, there have
been efforts at identifying clickbaits from social media like Twitter. Potthast et al. (2016) trained a ran-
dom forest classifier by extracting various features from the post texts, linked webpages and associated
meta information of tweets, to decide if a tweet was a clickbait. Agrawal (2016) trained a Convolu-
tional Neural Network (CNN) (Kim, 2014), using the post texts only, to detect clickbait posts in Reddit,
Facebook and Twitter. In (Chakraborty et al., 2017), researchers analysed the differences in content,
sentiment, consumers, etc., between the clickbait and non-clickbait tweets.

2.2 Clickbait Regression
Binary clickbait classification is not sufficient. Rather, it is useful to predict the finegrained intensity
of the clickbait which can enable ranking of clickbaits, thereby providing a knob for elimination of
clickbaits rather than a blanket binary elimination. The Clickbait Challenge (Potthast et al., 2017) has

4838

Team Name Method Paper
carpetshark Ensemble of Linear SVMs (Grigorev, 2017)
whitebait LSTMs, word2vec (Mikolov et al., 2013) (Thomas, 2017)
pike Hand-crafted 331 features, Linear, Logistic, Random Forest regression (Cao et al., 2017)
tuna Character level embeddings using CNNs, word2vec (Mikolov et al., 2013), LSTMs (Gairola et al., 2017)
torpedo Hand-crafted features, GloVe (Pennington et al., 2014), Linear Regression (Indurthi and Oota, 2017)
salmon Hand-crafted features, XGBoost (Elyashar et al., 2017)
snapper 65 Hand-crafted features, Stacking (Papadopoulou et al., 2017)
albacore Bidirectional GRUs (Cho et al., 2014), GloVe (Pennington et al., 2014) (Omidvar et al., 2018)
pineapplefish CNN and Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) (Glenski et al., 2017)
zingel Bidirectional GRUs (Cho et al., 2014) with attention (Bahdanau et al., 2014), GloVe (Pennington et al., 2014) (Zhou, 2017)

Table 2: Some of the best teams who participated in the Clickbait Challenge. (LSTMs = Long Short
Term Memory Networks, CNNs = Convolutional Neural Networks)

been devised in 2017 to enable benchmarking of solutions for the clickbait strength prediction problem.
In this challenge, the goal is to predict the intensity of clickbaits rather than just predicting if a particular
item is a clickbait or not. Table 2 shows various approaches that have been proposed for the clickbait
intensity prediction task. Some approaches use traditional machine learning regression methods using a
large set of hand crafted features, while others look at neural architectures (like RNNs, LSTMs, GRUs
and CNNs) supported by word embeddings like word2vec and GloVe.

3 Dataset

The Webis Clickbait Corpus consists of 38517 tweets (Potthast et al., 2018). Restricting to English-
language publishers, Potthast et al. (2018) obtain a ranking of the top-most retweeted news publishers
from the NewsWhip social media analytics service5. Taking the top 27 publishers, they used Twitter”s
API to record every tweet they published in the period from December 1, 2016, through April 30, 2017.
They filtered and sampled from this collection of 459541 tweets to obtain a clean dataset of 38517 tweets.
Each of the tweets was annotated for clickbait intensity label by five different workers from Amazon
Mechanical Turk (AMT). A 4-point Likert scale was followed with these values: Not clickbaiting (0.0),
Slightly clickbaiting (0.33), Considerably clickbaiting (0.66), Heavily clickbaiting (1.0). Of this, 19538
(of which 4761 are clickbaits) tweets have been released for training with labels. The maximum post
size is 25. The post lengths follow a normal distribution around a mean of 12. We split the labeled data
into 80:20 ratio for training and validation. We perform 5-fold cross validation and compile the results
on the validation set.

The remaining 18979 (of which 4515 are clickbaits) tweets are used by the clickbait challenge server
for testing the submissions. This test set is private and not accessible publicly. Moreover, there are
extremely limited number of test runs which can be submitted to the test server.

Empirical observations reveal that the field postText (text of the post) in the given dataset contributes
majorly to decide the intensity of the clickbait. Hence, in spite of the availability of the tweets’ metadata
like the post media, the title of the target linked page, the content paragraphs and keywords of the target
page, the time of the post and caption of every image in the target article, we use only the post text of the
tweet to train a machine learning model to predict the clickbait intensity score of each tweet. We leave
further exploration of other metadata fields as part of future work.

4 Evaluation Metrics

The goal for the clickbait intensity prediction task is to develop a model that can predict how click baiting
a social media post is. The score is a real number between 0 and 1. Mean Squared Error (MSE) with
respect to the mean judgments of the annotators is used as the primary evaluation metric. Models whose
preditions have the lowest MSE would be ranked on the top. Unlike other classification task, where
F1 score or accuracy is the evaluation metric, this challenge focuses more on predicting the intensity of
the title than classifying the title as clickbait or not. Official evaluation is done on the platform called
TIRA (Potthast et al., 2014). This platform evaluates the predictions by running the code for predictions
in a virtual machine in a sandboxed environment which ensures that the test data is kept private and not

5https://www.newswhip.com/

4839

revealed to public. Moreover, there are a limited number of times one can predict on the test data to ensure
that the models are not trained to overfit the test data. The evaluation platform also computes secondary
evaluation metrics such as the Median Absolute Error (MedAE), the F1-Score (F1) and Accuracy (Acc)
with respect to the truth class.

5 Approach

We formulate the problem of clickbait strength prediction as a regression problem. We build multiple re-
gression models using pretrained word embeddings, pretrained transformer representations and finetuned
transformer representations for clickbait strength prediction. We experiment with various regression al-
gorithms and rigorously investigate the efficacy of these for clickbait strength prediction.

5.1 Word and Sentence Embedding Representations

Word embeddings have been widely used in modern Natural Language Processing applications as they
provide semantic vector representation of words. They capture the semantic properties of words and the
linguistic relationship between them. These word embeddings have improved the performance of many
downstream tasks across many domains like text classification, machine comprehension etc. (Camacho-
Collados and Pilehvar, 2018). Multiple ways of generating word embeddings exist, such as Neural Prob-
abilistic Language Model (Bengio et al., 2003), word2Vec (Mikolov et al., 2013), GloVe (Pennington
et al., 2014), LexVec (Salle et al., 2016), dependency-based embeddings (DepVec) (Levy and Goldberg,
2014) and more recently ELMo (Peters et al., 2018).

ELMo can generate different word embeddings for a word that captures the context of a word – that
is its position in a sentence. ELMo achieves this by using two deep unidirectional LSTMs (forward and
backward) and then computing embedding for a word as a weighted combination of hidden layer outputs
at that position.

Universal Sentence Encoder (Cer et al., 2018) is based on the Transformer encoder (Vaswani et al.,
2017) and a deep averaging network. It is trained using unsupervised data from Wikipedia, web news,
web question-answer pages and discussion forums, and supervised data from the Stanford Natural Lan-
guage Inference (SNLI) corpus.

We experiment with two models – ELMo (Peters et al., 2018) and Google’s Universal sentence en-
coder (Cer et al., 2018) representations for transforming the clickbait title into a dense numerical vector
representation.

5.2 Transformer Representations

After the original Transformer work by Vaswani et al. (2017), several architectures have been proposed
like BERT (Devlin et al., 2018), RoBERTa (Liu et al., 2019) and OpenAI’s GPT2 (Radford et al., 2019)
and T5 (Raffel et al., 2019). The GLUE (Wang et al., 2019b) and the SuperGLUE (Wang et al., 2019a)
dashboards indicate the great success of the transformer models which have outperformed all of the pre-
vious methods across complex NLP tasks like text classification, textual entailment, machine translation,
word sense disambiguation, etc. We present the first of its kind work to investigate the application of
transformer models for the clickbait intensity prediction task.

Transformer networks follow a non-recurrent architecture with stacked self-attention and fully con-
nected layers for both the encoder and decoder, each with six layers. They are based on concepts like
self attention, multi-head attention, positional embeddings, residual connections and masked attention.
While transformers follow an encoder-decoder architecture, just the encoder or the decoder have been
used to define other popular architectures like BERT, GPT-2, etc.

BERT (Devlin et al., 2018) essentially is a transformer encoder with 12 layers, 12 attention heads and
768 dimensions. We used the pre-trained model which has been trained on Books Corpus and Wikipedia
using the MLM (masked language model) and the next sentence prediction (NSP) loss functions. The
post text sequence is prepended with a “CLS” token. The representation C for the “CLS” token from the
last encoder layer is used for regression by connecting it to an output softmax layer. We also finetune

4840

the pre-trained model using labeled training data for the clickbait intensity prediction task. BERTLarge
is similar to BERT but with 24 layers, 16 attention heads and 1024 dimensions.

OpenAI’s GPT2 (Radford et al., 2019) uses a left-to-right Transformer, where every token can only
attend to previous tokens in the self-attention layers of the Transformer. We also finetune the pre-trained
model using labeled training data for the clickbait intensity prediction task. GPT model size is almost the
same as the BERTBASE model size. GPT is trained on the BooksCorpus (800M words); BERT is trained
on the BooksCorpus (800M words) and Wikipedia (2,500M words). The largest GPT-2 variant is 1.5B
parameters large and could take up more than 6.5 GBs of storage space.

RoBERTa (Liu et al., 2019) is a robustly optimized method for pretraining natural language processing
(NLP) systems that improves on BERT. RoBERTa was trained with much more data – 160GB of text
instead of the 16GB dataset originally used to train BERT. It is also trained for larger number of iterations
up to 500K. Compared to BERT, batch sizes for training were 8K instead of 256 in the original BERT
base model. Further, it uses larger byte-pair encoding (BPE) vocabulary with 50K subword units instead
of character-level BPE vocabulary of size 30K used for BERT. Finally, compared to BERT, it removes
the next sequence prediction objective from the training procedure, and a dynamically changing masking
pattern is applied to the training data. RoBERTaLarge has configuration similar to BERTLarge.

Post Title Rating

0 7 plus-size athletes talk about their life in sports 0.199

1 He cheated. Now his ex-girlfriend has some heart-breaking questions 0.866

… … …

N Missouri airports may soon serve alcohol to go 0.333

Training a
regression

model

Transformer
(Finetuned)

0 1 … 767 Rating

0 -0.025 0.213 … 0.414 0.199

1 -0.124 0.193 … 0.826 0.866

… … … … … …

N 0.114 0.133 … 0.236 0.333

Transformer
(Pretrained)

Regression
model

“These are fastest ways to make
friends, according to one scientist”

Post Title Rating

0 7 plus-size athletes talk about their life in sports 0.199

1 He cheated. Now his ex-girlfriend has some heart-breaking questions 0.866

… … …

N Missouri airports may soon serve alcohol to go 0.333

Train Step 1: Finetune the pretrained transformer on the labeled training data

Transformer
(Finetuned)

Train Step 2: Generate features using the finetuned transformer model

0 1 … 767 Rating

0 -0.025 0.213 … 0.414 0.199

1 -0.124 0.193 … 0.826 0.866

… … … … … …

N 0.114 0.133 … 0.236 0.333

Train Step 3: Training a regressor model using the features and the score

Transformer
(Finetuned)

Regression
model

Test: Predicting the score of an unseen post using the pipeline

0.88
Rating

Figure 2: Proposed train-test approach for the Transformer Regression model

5.3 Regression Models

We train multiple regression models on various kinds of word, sentence and transformer representations.
We experiment with the following regression algorithms.

• Simple Linear Regression (LR): Linear regression is the most simplest of the regression algo-
rithms typically fitted using the least squares approach. The relationship between the independent
variable is modeled as a linear combination of the attributes.

• Ridge Regression (RR): Ridge Regression model is a linear regression model with L2 penalty as
regularizers.

• Gradient Boosted Regression (GBR): GB regression learns an ensemble of regression trees, each
of which have scalar values in the leaves. The ensemble of trees is produced by computing, in

4841

each step, a regression tree that approximates the gradient of the loss function, and adding it to the
previous tree with coefficients that minimize the loss of the new tree. The output of the ensemble
on a given instance is the sum of the tree outputs.

• Random Forest Regression (RFR): A random forest regressor is an ensemble learning algorithm
for regression which constructs multiple decision trees at training time and outputting the average
of the predictions of the individual trees, there by prevents over-fitting.

• Adaboost Regression (ABR): AdaBoost regressor is another ensemble learning algorithm that be-
gins by fitting a regressor on the original dataset and then fits additional copies of the regressor
on the same dataset but the weights of instances are adjusted according to the error of the current
prediction, thereby subsequent regressors focus more on the difficult cases.

6 Experiments

In this work, we try various kinds of approaches and investigate how they perform for the clickbait
prediction task. We use multiple models to transform the text into features. We train multiple regression
models on the above features and evaluate the efficacy of each of the pre-trained embeddings (BERT,
GPT2 or RoBERTa) for the downstream clickbait prediction task.

We experimented with the following regression techniques: (1) Simple Linear Regression (LR), (2)
Ridge Regression (RR), (3) Gradient Boosted Regressor (GBR), (4) Random Forest Regression (RFR),
(5) Adaboost Regression (ABR).

Empirical observations reveal that the field postText (text of the post) in the given dataset contributes
majorly to decide the intensity of the clickbait. Hence, in spite of the availability of the tweets’ metadata
like the post media, the title of the target linked page, the content paragraphs and keywords of the target
page, the time of the post and caption of every image in the target article, we use only the post text of the
tweet to train a machine learning model to predict the clickbait intensity score of each tweet. We leave
further exploration of other metadata fields as part of future work.

First, we experiment with pretrained word and sentence embedding representations. In this setting,
we transform the text using the pretrained word embedding or the pretrained sentence encoder. These
representations are used to train a regression model. Table 5 shows results using this setting on the
validation set.

Next, we experiment with pretrained Transformer representations. In this setting, we transform the
train and the test data using the pretrained transformer without any finetuning step. The representation C
for the “CLS” token from the last encoder layer of the pretrained transformer models are used as features
for these regression methods. Table 3 shows results using this setting on the validation set.

Further, we experiment with finetuned Transformer representations. In this setting, we finetune the
pretrained transformer model with the labeled data. After finetuning, we use the finetuned transformer
model to transform the input text into vector representations and fit a regressor model on these represen-
tations.The representation C for the “CLS” token from the last encoder layer of the finetuned transformer
models are used as features for these regression methods.

The training method involves two stage training process. In the first step we finetune the Transformer
model using the training data to create the finetuned Transformer model. In the next stage, the finetuned
Transformer model is used to generate the representations of the training data. These representations are
further used to train a regression model. Figure 2 explains these steps in detail.

For predicting the intensity of an unseen sample, first we transform the input post text into features
using the finetuned Transformer model. These features are fed into the trained regressor which predicts
a numeric score for the post. The predicted clickbait score is rectified by passing through a rectifier
function as defined below to ensure that the clickbait score remains in the interval [0,1]. Bottom part of
Figure 2 shows the flow for prediction.

For the final and official evaluation, we have used the complete training dataset for training the model.
This model is used to make predictions on the unseen official test set. As there were limited number of
runs allowed for the final test runs to prevent participants from over-fitting the test data, we submitted

4842

0

50

100

150

200

250

300

0
0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.
1

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19 0.
2

0.
21

0.
22

0.
23

0.
24

0.
25

0.
26

0.
27

0.
28

0.
29 0.
3

0.
31

0.
32

0.
33

0.
34

0.
35

0.
36

0.
37

0.
38

0.
39 0.
4

0.
41

0.
42

0.
43

0.
44

0.
45

>0
.4
5

N
um

be
r o

f P
os

ts

Absolute Error Between Actual and Predicted

Figure 3: Histogram of the absolute values of the er-
rors produced by the model

Figure 4: Attention Visualization of the last
Transformer layer for two clickbait examples

only those models which have done fairly well on the validation set. Table 4 shows the results on the
validation set.

7 Results and Analysis

Pretrained Method MSE MedAE F1 Accuracy
BERT LR 0.0313 0.1151 0.5878 0.8215
BERT RFR 0.0354 0.1266 0.5311 0.8135
BERT RR 0.0308 0.1140 0.5906 0.8258
BERT ABR 0.0473 0.1735 0.5104 0.8074
BERT GBR 0.0346 0.1246 0.5455 0.8115
RoBERTa LR 0.0281 0.1100 0.6527 0.8442
RoBERTa RFR 0.0360 0.1333 0.5012 0.8133
RoBERTa RR 0.0285 0.1128 0.6362 0.8404
RoBERTa ABR 0.0443 0.1662 0.5876 0.8162
RoBERTa GBR 0.0334 0.1253 0.5519 0.8185
RoBERTaLarge LR 0.0286 0.1115 0.6286 0.8383
RoBERTaLarge RFR 0.0371 0.1357 0.4641 0.8092
RoBERTaLarge RR 0.0283 0.1116 0.6280 0.8379
RoBERTaLarge ABR 0.0478 0.1748 0.4037 0.7976
RoBERTaLarge GBR 0.0348 0.1273 0.4923 0.8103
BERTLarge LR 0.0357 0.1291 0.5850 0.8210
BERTLarge RFR 0.0380 0.1340 0.5017 0.8060
BERTLarge RR 0.0345 0.1279 0.5854 0.8226
BERTLarge ABR 0.0502 0.1757 0.4599 0.7974
BERTLarge GBR 0.0383 0.1370 0.5125 0.8094
GPT2 LR 0.0669 0.1941 0.0401 0.7386
GPT2 RFR 0.0626 0.1944 0.0053 0.7461
GPT2 RR 0.0643 0.1941 0.0457 0.7434
GPT2 ABR 0.0667 0.2030 0.0141 0.7470
GPT2 GBR 0.0624 0.1942 0.0194 0.7473

Table 3: Results on the validation set using just
the pretrained Transformer model representa-
tions

Finetuned Method MSE MedAE F1 Accuracy
BERT NNR 0.0283 0.1071 0.6859 0.8514
BERT LR 0.0270 0.1050 0.6771 0.8495
BERT RFR 0.0280 0.1067 0.6768 0.8500
BERT RR 0.0270 0.1049 0.6761 0.8495
BERT ABR 0.0276 0.1047 0.6372 0.8413
BERT GBR 0.0275 0.1061 0.6792 0.8518
GPT2 NNR 0.0275 0.1009 0.6776 0.8441
GPT2 LR 0.0271 0.1034 0.6660 0.8418
GPT2 RFR 0.0282 0.1067 0.6663 0.8411
GPT2 RR 0.0267 0.1018 0.6651 0.8404
GPT2 ABR 0.0281 0.1146 0.6618 0.8404
GPT2 GBR 0.0269 0.1014 0.6734 0.8459
RoBERTa NNR 0.0251 0.0951 0.7018 0.8518
RoBERTa LR 0.0248 0.1000 0.6952 0.8539
RoBERTa RFR 0.0257 0.1000 0.6806 0.8468
RoBERTa RR 0.0244 0.0984 0.6923 0.8525
RoBERTa ABR 0.0263 0.1210 0.6974 0.8552
RoBERTa GBR 0.0241 0.0972 0.6960 0.8539
BERTLarge NNR 0.0267 0.1042 0.6798 0.849
BERTLarge LR 0.0253 0.1029 0.6756 0.8527
BERTLarge RF 0.0256 0.1046 0.6739 0.8513
BERTLarge RR 0.0252 0.1022 0.6746 0.8522
BERTLarge AR 0.0263 0.1060 0.6666 0.8495
BERTLarge GBR 0.0256 0.1036 0.6690 0.8502
RoBERTaLarge NNR 0.0289 0.1047 0.7018 0.8570
RoBERTaLarge LR 0.0255 0.1022 0.6831 0.8545
RoBERTaLarge RFR 0.2533 0.1013 0.6850 0.8547
RoBERTaLarge RR 0.0252 0.1004 0.6870 0.8556
RoBERTaLarge ABR 0.0256 0.1067 0.6799 0.8531
RoBERTaLarge GBR 0.0253 0.1006 0.6851 0.8549
RoBERTaLarge XGBR 0.2520 0.1003 0.6831 0.8541

Table 4: Results on the validation set using
Finetuned Transformer model representations

Table 5 show results using different machine learning regression methods using word and sentence
embeddings. Tables 3 and 4 show results using pretrained-transformer representations and finetuned
transformer representations respectively. Among the pretrained word and sentence embedding methods
in Table 5, the best MSE/MedAE is obtained using Universal Sentence Encoder and with Ridge Regres-
sion. The best F1/Acc is obtained using ELMo with Linear Regression. Among the transformer based
methods in Table 4, the best MSE and MedAE is obtained using RoBERTa approach and with GB regres-
sion. On the other hand, with respect to classification metrics, RoBERTaLarge with NNR performs best.
We also experimented with just the finetuning approach (without any extra regressor augmented at the
last layer, i.e., just using a neuron in the output layer of the neural network). We call this method as neu-

4843

Embedding Method MSE MedAE F1 Acc
ELMo LR 0.0293 0.1130 0.6308 0.8390
ELMo RFR 0.0368 0.1267 0.5348 0.8066
ELMo RR 0.0292 0.1131 0.6298 0.8385
ELMo ABR 0.0405 0.1576 0.5288 0.8194
ELMo GBR 0.0309 0.1185 0.583 0.8260
Universal Encoder LR 0.0286 0.1132 0.6179 0.8323
Universal Encoder RFR 0.0349 0.1267 0.5611 0.8169
Universal Encoder RR 0.0283 0.1120 0.6155 0.8346
Universal Encoder ABR 0.0411 0.1643 0.5415 0.8137
Universal Encoder GBR 0.0310 0.1192 0.5624 0.8203

Table 5: Results on the validation set using pre-
trained word and sentence embedding based
methods

Post Actual Predicted
score score

G
oo

d
Pr

ed
ic

tio
ns Pete Shotton (early John Lennon bandmate

and childhood friend) has died at 75
0.07 0.07

Lady Gaga’s #Joanne album set for
#SuperBowl-fueled rise on the Billboard
200 Chart

0.07 0.07

Five ways to store your bike in style 0.73 0.73
What % Lucky Are You? 0.87 0.87

B
ad

Pr
ed

ic
tio

ns 5 things to know about the GOP health care
plan’s score

1.00 0.52

#Pratyusha’s former boyfriend #RahulRaj
thinks this is a publicity stunt

1.00 0.52

This animated map shows the largest com-
pany by revenue for every state @BI Video

0.07 0.52

What’s happening with Bitcoin and where it’s
heading next.

0.13 0.58

Table 6: Examples from validation set: Top
part shows examples where model predictions
were accurate. Bottom part corresponds to ex-
amples where model predictions were wrong.

Team Name MSE MedAE F1 Prec. Recall Acc.
goldfish 1 (ours) 0.0242 0.1015 0.7408 0.7394 0.7422 0.8764
goldfish 2 (ours) 0.0245 0.1026 0.7330 0.7389 0.7271 0.8740
goldfish 3 (ours) 0.0280 0.1117 0.7098 0.7288 0.6917 0.8654
torpedo19 1 (ours) 0.0303 0.1241 0.6774 0.7548 0.6144 0.8608
albacore (Omidvar et
al., 2018)

0.0315 0.1220 0.6703 0.7315 0.6186 0.8553

torpedo19 2 (ours) 0.0325 0.1254 0.6645 0.7443 0.6002 0.8558
torpedo19 3 (ours) 0.0325 0.1253 0.6645 0.7441 0.6002 0.8558
blobfish 0.0326 0.1188 0.6457 0.7382 0.5739 0.8502
zingel (Zhou, 2017) 0.0333 0.1315 0.6827 0.7188 0.6501 0.8563
anchovy 0.0340 0.1358 0.6792 0.7170 0.6452 0.8550
icarfish 0.0357 0.1338 0.6213 0.7681 0.5216 0.8487
emperor 0.0359 0.1337 0.6406 0.7139 0.5810 0.8449
carpetshark (Grigorev,
2017)

0.0362 0.1390 0.6381 0.7282 0.5679 0.8468

ray 0.0365 0.1435 0.6913 0.6799 0.7030 0.8506
electriceel 0.0384 0.1393 0.5881 0.7266 0.4939 0.8354
arowana 0.0391 0.1412 0.6564 0.6587 0.6540 0.8371
pineapplefish (Glenski
et al., 2017)

0.0414 0.1392 0.6313 0.6422 0.6208 0.8275

whitebait (Thomas,
2017)

0.0429 0.1392 0.5648 0.6990 0.4738 0.8263

clickbait17-baseline 0.0435 0.1543 0.5521 0.7582 0.4341 0.8324
pike (Cao et al., 2017) 0.0446 0.1094 0.6037 0.7111 0.5245 0.8362
tuna (Gairola et al.,
2017)

0.0457 0.1123 0.6537 0.6543 0.6532 0.8354

torpedo (Indurthi and
Oota, 2017)

0.0792 0.2363 0.6499 0.5297 0.8405 0.7846

houndshark 0.0994 0.3206 0.0231 0.7794 0.0117 0.7641
humuhumunu... 0.1174 0.3045 0.3831 0.2385 0.9736 0.2540
dory 0.1182 0.1991 0.4667 0.3799 0.6050 0.6712
salmon 0.1743 0.3967 0.2609 0.1673 0.5926 0.2086
snapper 0.2524 0.4272 0.4341 0.2868 0.8926 0.4464

Table 7: Official Results on the test data from the Click-
bait Challenge leaderboard. Best results highlighted in
bold.

ral network regression (NNR). Note that (1) the finetuning+ML regressors approach typically provides
better results compared to the NNR method. (2) finetuned models have lower MSE compared to the
corresponding pretrained models (especially GPT2 where the pretrained-only model performs poorly).
(3) Larger Transformer models like RoBERTaLarge and BERTLarge do not lead to lower MSE/MedAE
values, probably because of relatively small labeled data.

Finally, we show results on the test set by comparing them across several baselines in Table 7 also
available on the Clickbait Challenge Leaderboard6 as on 23-Nov-2019. Note that 6 of the top 7 are
our approaches. Details of these approaches are as follows: goldfish 1 is RoBERTa + GBR, goldfish 2
is RoBERTa + RR, goldfish 3 is GPT2 + LR, torpedo19 1 is Universal Encoder + RR, torpedo19 2 is
ELMo + RR, torpedo19 3 is ELMo + LR.

Figure 3 shows the histogram of the absolute value of the errors produced by the model on the pre-
dictions. We can observe that for most of the posts the error between the actual and the predicted value
is less than 0.2. Very few samples have error in the range of 0.2 to 0.45. There are a very few posts
whose error is greater than 0.45. Further, Table 6 shows examples of posts where our proposed gives
good predictions as well as those where our model fails. Higher score implies high degree of clickbait.
We show examples for both high as well as low clickbait strength.

Finally, in Figure 4 we show attention visualization for average attention that the [CLS] token pays to
various words in the post in the last Transformer layer. For the first example, the words “15”, “ways”,
“double” and “income” have high attention values – intuitively, these words indicate clickbaity-ness as
well. Similarly, clickbaity words in the second example like “Five” and “style” have high attention
values.

6https://www.tira.io/task/clickbait-detection/dataset/clickbait17-test-170720/

4844

8 Conclusion

In this paper, we proposed various methods for clickbait intensity prediction based on the title of the
post. Using a benchmark dataset from the Clickbait Challenge, we evaluate multiple models; we are the
first to investigate effectiveness of Transformer based models for this task. As of now, we rank at the top
on the official leaderboard for the challenge. We plan to work on reducing the model size and improve
runtime latency using popular knowledge distillation methods.

References
Amol Agrawal. 2016. Clickbait detection using deep learning. In Next Generation Computing Technologies

(NGCT), pages 268–272.

Ankesh Anand, Tanmoy Chakraborty, and Noseong Park. 2017. We used neural networks to detect clickbaits:
You won’t believe what happened next! In ECIR, pages 541–547.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural probabilistic language
model. JMLR, 3(Feb):1137–1155.

Prakhar Biyani, Kostas Tsioutsiouliklis, and John Blackmer. 2016. 8 amazing secrets for getting more clicks:
Detecting clickbaits in news streams using article informality. In AAAI.

Jonas Nygaard Blom and Kenneth Reinecke Hansen. 2015. Click bait: Forward-reference as lure in online news
headlines. Journal of Pragmatics, 76:87–100.

Jose Camacho-Collados and Mohammad Taher Pilehvar. 2018. From word to sense embeddings: A survey on
vector representations of meaning. J. AIR, 63:743–788.

Xinyue Cao, Thai Le, et al. 2017. Machine learning based detection of clickbait posts in social media. arXiv
preprint arXiv:1710.01977.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant, Mario
Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. 2018. Universal sentence encoder. arXiv preprint
arXiv:1803.11175.

Abhijnan Chakraborty, Bhargavi Paranjape, Sourya Kakarla, and Niloy Ganguly. 2016. Stop clickbait: Detecting
and preventing clickbaits in online news media. In ASONAM, pages 9–16.

Abhijnan Chakraborty, Rajdeep Sarkar, Ayushi Mrigen, and Niloy Ganguly. 2017. Tabloids in the era of social
media?: Understanding the production and consumption of clickbaits in twitter. HCI, 1(CSCW):30.

Yimin Chen, Niall J Conroy, and Victoria L Rubin. 2015. Misleading online content: Recognizing clickbait as
false news. In Multimodal Deception Detection, pages 15–19.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Jeffrey Dvorkin. 2015. Column: Why click-bait will be the death of journalism. pbs. org/newshour/making-
sense/what-you-dont-know-aboutclick-bait-journalism-could-kill-you.

Aviad Elyashar, Jorge Bendahan, and Rami Puzis. 2017. Detecting clickbait in online social media: You won’t
believe how we did it. arXiv preprint arXiv:1710.06699.

Siddhartha Gairola, Yash Kumar Lal, Vaibhav Kumar, and Dhruv Khattar. 2017. A neural clickbait detection
engine. arXiv preprint arXiv:1710.01507.

Maria Glenski, Ellyn Ayton, Dustin Arendt, and Svitlana Volkova. 2017. Fishing for clickbaits in social images
and texts with linguistically-infused neural network models. arXiv preprint arXiv:1710.06390.

4845

Alexey Grigorev. 2017. Identifying clickbait posts on social media with an ensemble of linear models. arXiv
preprint arXiv:1710.00399.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Vijayasaradhi Indurthi and Subba Reddy Oota. 2017. Clickbait detection using word embeddings. arXiv preprint
arXiv:1710.02861.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.

Omer Levy and Yoav Goldberg. 2014. Dependency-based word embeddings. In ACL, volume 2, pages 302–308.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of
words and phrases and their compositionality. In NIPS, pages 3111–3119.

Amin Omidvar, Hui Jiang, and Aijun An. 2018. Using neural network for identifying clickbaits in online news
media. In Annual Intl. Symp. on Info. Management and Big Data, pages 220–232.

Olga Papadopoulou, Markos Zampoglou, Symeon Papadopoulos, and Ioannis Kompatsiaris. 2017. A two-level
classification approach for detecting clickbait posts using text-based features. arXiv preprint arXiv:1710.08528.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GLoVe: Global Vectors for Word
Representation. In EMNLP, pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer. 2018. Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo Rosso, Efstathios Stamatatos, and Benno Stein. 2014.
Improving the Reproducibility of PAN’s Shared Tasks: Plagiarism Detection, Author Identification, and Author
Profiling. In CLEF, pages 268–299.

Martin Potthast, Sebastian Köpsel, Benno Stein, and Matthias Hagen. 2016. Clickbait detection. In ECIR, pages
810–817.

Martin Potthast, Tim Gollub, Matthias Hagen, and Benno Stein. 2017. The Clickbait Challenge 2017: Towards a
Regression Model for Clickbait Strength. In Clickbait Challenge.

Martin Potthast, Tim Gollub, Kristof Komlossy, Sebastian Schuster, Matti Wiegmann, Erika Patricia Garces Fer-
nandez, Matthias Hagen, and Benno Stein. 2018. Crowdsourcing a Large Corpus of Clickbait on Twitter. In
27th International Conference on Computational Linguistics (COLING).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models
are unsupervised multitask learners. OpenAI Blog, 1(8).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv
preprint arXiv:1910.10683.

Md Main Uddin Rony, Naeemul Hassan, and Mohammad Yousuf. 2017. Diving deep into clickbaits: Who use
them to what extents in which topics with what effects? In ASONAM, pages 232–239.

David Rowe. 2011. Obituary for the newspaper? tracking the tabloid. Journalism, 12(4):449–466.

Alexandre Salle, Marco Idiart, and Aline Villavicencio. 2016. Matrix factorization using window sampling and
negative sampling for improved word representations. arXiv preprint arXiv:1606.00819.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural networks. IEEE Trans. on Signal
Processing, 45(11):2673–2681.

Philippe Thomas. 2017. Clickbait identification using neural networks. arXiv preprint arXiv:1710.08721.

4846

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. In NIPS, pages 5998–6008.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R. Bowman. 2019a. SuperGLUE: A stickier benchmark for general-purpose language understanding
systems. arXiv preprint 1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2019b. GLUE: A
multi-task benchmark and analysis platform for natural language understanding. In ICLR.

Wei Wei and Xiaojun Wan. 2017. Learning to identify ambiguous and misleading news headlines. arXiv preprint
arXiv:1705.06031.

Hai-Tao Zheng, Xin Yao, Yong Jiang, Shu-Tao Xia, and Xi Xiao. 2017. Boost clickbait detection based on user
behavior analysis. In APWeb-WAIM, pages 73–80.

Yiwei Zhou. 2017. Clickbait detection in tweets using self-attentive network. arXiv preprint arXiv:1710.05364.

