
Proceedings of the 28th International Conference on Computational Linguistics, pages 480–496
Barcelona, Spain (Online), December 8-13, 2020

480

Recent Neural Methods on Slot Filling and Intent Classification
for Task-Oriented Dialogue Systems: A Survey

Samuel Louvan
University of Trento

Fondazione Bruno Kessler
slouvan@fbk.eu

Bernardo Magnini
Fondazione Bruno Kessler
magnini@fbk.eu

Abstract

In recent years, fostered by deep learning technologies and by the high demand for conversational
AI, various approaches have been proposed that address the capacity to elicit and understand
user’s needs in task-oriented dialogue systems. We focus on two core tasks, slot filling (SF) and
intent classification (IC), and survey how neural based models have rapidly evolved to address
natural language understanding in dialogue systems. We introduce three neural architectures:
independent models, which model SF and IC separately, joint models, which exploit the mutual
benefit of the two tasks simultaneously, and transfer learning models, that scale the model to new
domains. We discuss the current state of the research in SF and IC, and highlight challenges that
still require attention.

1 Introduction

The ability to understand user’s requests is essential to develop effective task-oriented dialogue systems.
For example, in the utterance ”I want to listen to Hey Jude by The Beatles”, a dialogue system should
correctly identify that the user’s intention is to give a command to play a song, and that Hey Jude and
The Beatles are, respectively, the song’s title and the artist name that the user would like to listen. In
a dialogue system this information is typically represented through a semantic-frame structure (Tur and
De Mori, 2011), and extracting such representation involves two tasks: identifying the correct frame (i.e.
intent classification (IC)) and filling the correct value for the slots of the frame (i.e. slot filling (SF)).

In recent years, neural-network based models have achieved the state of the art for a wide range of
natural language processing tasks, including SF and IC. Various neural architectures have been exper-
imented on SF and IC, including RNN-based (Mesnil et al., 2013) and attention-based (Liu and Lane,
2016) approaches, till the more recent transformers models (Chen et al., 2019). Input representations
have also evolved from static word embeddings (Mikolov et al., 2010; Collobert and Weston, 2008; Pen-
nington et al., 2014) to contextualized word embeddings (Peters et al., 2018; Devlin et al., 2019). Such
progress allows to better address dialogue phenomena involving SF and IC, including context modeling,
handling out-of-vocabulary words, long-distance dependency between words, and to better exploit the
synergy between SF and IC through joint models. In addition to rapid progresses in the research commu-
nity, the demand for commercial conversational AI is also growing fast, shown by a variety of available
solutions, such as Microsoft LUIS, Google Dialogflow, RASA, and Amazon Alexa. These solutions also
use various kinds of semantic frame representations as part of their framework.

Motivated by the rapid explosion of scientific progress, and by unprecedented market attention, we
think that a guided map of the approaches on SF and IC can be useful for a large spectrum of researchers
and practitioners interested in dialogue systems. The primary goal of the survey is to give a broad
overview of recent neural models applied to SF and IC, and to compare their performance in the con-
text of task-oriented dialogue systems. We also highlight and discuss open issues that still need to be
addressed in the future. The paper is structured as follows: Section 2 describes the SF and IC tasks,
commonly used datasets and evaluation metrics. Section 3, 4, and 5 elaborate on the progress and state
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of the art of independent, joint, and transfer learning models for both tasks. Section 6 discusses the
performance of existing models and open challenges.

Utterance I want to listen to Hey Jude by The Beatles
Slot O O O O O B-SONG I-SONG O B-ARTIST I-ARTIST
Intent PLAY SONG

Table 1: Example of SF and IC output for an utterance. Slot labels are in BIO format: B indicates the
start of a slot span, I the inside of a span while O denotes that the word does not belong to any slot.

2 Slot Filling and Intent Classification

This section provides some background relevant for SF and IC, sets the scope of the survey with respect
to the context in dialogue systems, defines SF and IC as tasks, and introduces the datasets and the metrics
that will be used in the rest of the paper.

2.1 Background
Task-oriented dialogue systems aim to assist users to accomplish a task (e.g. booking a flight, making
a restaurant reservation and playing a song) through dialogue in natural language, either in a spoken
or written form. As in most of the current approaches, we assume a system involving a pipeline of
components (Young et al., 2010), where the user utterance is first processed by an Automatic Speech
Recognition (ASR) module and then processed by a Natural Language Understanding (NLU) compo-
nent, which interprets the user’s needs. Then a Dialogue State Tracker (DST) accumulates the dialogue
information as the conversation progresses and may query a domain knowledge base to obtain relevant
data. A dialogue policy manager then decides what is the next action to be executed and a Natural
Language Generation (NLG) component produces the actual response to the user.

We focus on the NLU component, and we generalize several recent approaches assuming that the
output of the NLU process is a partially filled semantic frame (Wang et al., 2005; Tur and De Mori,
2011), corresponding to the intent of the user in a certain portion of the dialogue, with a number of
slot-value pairs that need to be filled to accomplish the intent. The notion of intent originates from the
idea that utterances can be assigned to a small set of dialogue acts (Stolcke et al., 2000), and it is now
largely adopted to identify a task or action that the system can execute in a certain domain. Slot-value
pairs, on the other end, represent the domain of the dialogue, and have been actually implemented either
as an ontology (Bellegarda, 2013), possibly with reasoning services (e.g. checking the constraints over
slot values) or simply trough a list of entity types that the system needs to identify during the dialogue.

Intents may correspond either to specific needs of the user (e.g. blocking a credit card, transferring
money, etc.), or to general needs (e.g. asking for clarification, thanking, etc.). Slots are defined for each
intent: for instance, to block a credit card it is relevant to know the name of the owner and the number of
the card. Values for the slots are collected through the dialogue, and can be expressed by the user either
in a single turn or in several turns. At each user turn in the dialogue the NLU component has to determine
the intent of the user utterance (intent classification) and has to detect the slot-value pairs referred in the
particular turn (slot filling). Table 1 shows the expected NLU output for the utterance ”I want to listen to
Hey Jude by The Beatles”.

2.2 Scope of the Survey
In Section §2.1, we described a task-oriented system as a pipeline of components, saying that SF and IC
are core tasks at the NLU level. Particularly, IC consists of classifying an utterance with a set of pre-
defined intents, while SF is defined as a sequence tagging problem (Raymond and Riccardi, 2007; Mesnil
et al., 2013), where each token of the utterance has to be tagged with a slot label. In this scenario training
data for SF typically consist of single utterances in a dialogue where tokens are annotated with a pre-
defined set of slot names, and slot values correspond to arbitrary sequences of tokens. In this perspective,
it is worth mentioning a research line on dialogue state tracking (Henderson et al., 2014; Mrksic et al.,
2015; Budzianowski et al., 2018), where the NLU component is usually embedded into DST. What is
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relevant for our topic is that in this context SF is defined as a classification problem: given the current
utterance and the previous dialogue history, the system has to decide whether a certain slot-value pair
defined in the domain ontology is referred or not in the current utterance. Although promising, from
the NLU perspective, this research line poses constraints (e.g. all slot-value pairs have to be pre-defined
in an ontology,) that limit the SF applicability. For this reason, and because NLU components are the
prevalent solution in current task-oriented systems, the focus of our survey will be on SF as a sequence
tagging problem, as more precisely defined in the next section.

2.3 Task Definition

We formulate SF and IC as follows. Given an input utterance x = (x1, x2, .., xT ), SF consists in
a token-level sequence tagging, where the system has to assign a corresponding slot label yslot =
(yslot1 , yslot2 , .., yslotT ) to each token xi of the utterance. On the other end, IC is defined as a classi-
fication task over utterances, where the system has to assign the correct intent label yintent for the
whole utterance x. In general, most machine learning approaches learn a probabilistic model to esti-
mate p(yintent,yslot|x,θ) where θ is the parameter of the model. Table 1 shows an example of the
expected output of a model for the SF and IC tasks. In the following sections, we outline the main
models that have been proposed for SF and IC, and categorize the models into three groups, namely
independent models (§3) , joint models (§4), and transfer learning based models (§5).

2.4 Datasets for SF and IC

In this section, according to our task definition, we list available dialogue datasets (most of them are
publicly available) where each utterance is assigned to one intent, and tokens are annotated with slot
names. Most of such datasets are collections of single turn user utterances (i.e., not multi-turn dialogues).
An example of a single-turn utterance annotation is shown in Table 1.

The ATIS (Airline Travel Information System) dataset (Hemphill et al., 1990) is the most widely used
single-turn dataset for NLU benchmarking. The total number of utterances is around 5K utterances that
consist of queries related to the airline travel domain, such as searching for a flight, asking for flight fare,
etc. While it has a relatively large number slot and intent labels, the distribution is quite skewed; more
than 70% of the intent is a flight search. The slots are dominated by a slot that expresses location names
such as FROMLOCATION and TOLOCATION. The MEDIA dataset (Bonneau-Maynard et al., 2005) is
constructed by simulating the conversation between a tourist and a hotel representative in the French
language. Compared to ATIS, the MEDIA corpus size is around three times larger; however, MEDIA
is only annotated with slot labels. The slots are related to hotel booking scenarios such as the number
of people, date, hotel facility, relative distance, etc. The MIT corpus (Liu et al., 2013) is constructed
through a crowdsourcing platform where crowd workers are hired to create natural language queries in
English and annotate the slot label in the queries. The MIT corpus covers two domains, namely movie
and restaurant, in which the utterances are related to finding information of a particular movie or actor,
searching or booking a restaurant with a particular distance and cuisine criteria. The SNIPS dataset
(Coucke et al., 2018) was collected by crowdsourcing through the SNIPS voice platform. Intents include
requests to a digital assistant to complete various tasks, such as asking the weather, playing a song,
book a restaurant, asking for a movie schedule, etc. SNIPS is now often used as a benchmark for NLU
evaluations.

While most datasets are available in English, recently there has been growing interest in expanding
slot filling and intent classification datasets to non-English languages. The original ATIS dataset has
been derived into several languages, namely Hindi, Turkish (Upadhyay et al., 2018), and Indonesian
(Susanto and Lu, 2017). The MultiATIS++ dataset from Xu et al. (2020) expands the ATIS dataset to
more languages, namely Spanish, Portuguese, German, French, Chinese, and Japanese. The work from
(Bellomaria et al., 2019) introduces the Italian version of the original SNIPS dataset. The Facebook
multi-lingual dataset (Schuster et al., 2019), introduced a dataset on Thai and Spanish languages across
three domains namely weather, alarm, and reminder. The detailed statistics of each dataset are listed in
Appendix A.
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2.5 Evaluation Metrics
For the IC task, evaluation is performed on the utterance level. The typical evaluation metric for IC is
accuracy, calculated as the number of the correct predictions made by the model divided by the total
number of predictions. As for SF, the evaluation is performed on the entity level. The common metrics
used is the metric introduced in CoNLL-2003 shared task (Sang and Meulder, 2003) to evaluate Named
Entity Recognition (NER) by computing the F-1 score. The F1-score, is the harmonic mean score be-
tween precision and recall. Precision is the percentage of slot predictions from the model which are
correct, while recall is the percentage of slots in the corpus that are found by the model. A slot prediction
is considered correct when an exact match is found (Sang and Meulder, 2003). As the slot is annotated in
BIO format to mark the boundary of the slot (see Table 1), a correct prediction is only counted when the
model can predict the correct slot label on the correct token offset. Consequently, the exact match met-
rics does not reward cases when the model predict correct slot label but get the incorrect slot boundary
(partial match).

3 Independent Models for SF and IC

Independent models train each task separately and recent neural models typically use RNN as the build-
ing block for SF and IC. At each time step t, the encoder transforms the word representation xt to the
hidden state ht. For SF, the output layer predicts the slot label yslott condition on ht. For IC, typically
the last hidden state hT is used to predict the intent label yintentof the utterance x. Note that, for inde-
pendent approaches, the models for SF and IC are trained separately. Most neural models for SF and
IC generally consist of several layers, namely an input layer, one or more encoder layer, and an output
layer. Consequently, the main differences between models are in the specifics of these layers. The most
common dataset used for evaluating independent models is ATIS.

In the input layer of neural models each word is mapped into embeddings. Mesnil et al. (2013) com-
pared several embeddings, namely pre-trained SENNA (Collobert et al., 2011), RNN Language Model
(RNNLM) (Mikolov et al., 2011), and random embeddings. SENNA gives the best result compared to
other embeddings, and, typically, further fine-tuning word embeddings improves performance. (Yao et
al., 2013) report that embeddings learned from scratch directly on ATIS data (task-specific embeddings)
are better than SENNA. However, task-specific embeddings are composed not only by words but also
by named entities (NE) and syntactic features1. NE improves performance significantly while part-of-
speech only adds small benefits. Ravuri and Stolcke (2015) emphasizes the importance of character
representation to handle OOV issues.

For the encoder layer, various RNN architectures have been applied to SF and IC (Mesnil et al., 2013;
Mesnil et al., 2015; Liu and Lane, 2015). Mesnil et al. (2013) compare the Elman (Elman, 1990) and
Jordan (Jordan, 1997) RNNs. They observe that the performance of the Jordan RNN is marginally better
than Elman. They also experiment a bi-directional version of Jordan RNN and obtained the best score
of 93.89 F1 for SF, performing better than CRF for about +1 absolute F1 improvement. Xu and Sarikaya
(2013) use Convolutional Neural Network (CNN) (LeCun et al., 1998) to extract 5-gram features and
apply max-pooling to obtain the word representation before passing it to the output layer. Compared
with RNN (Yao et al., 2013; Mesnil et al., 2013), CNN gives lower performance for SF on ATIS. Other
studies (Yao et al., 2014a; Vu et al., 2016) adapt Long Short-Term Memory Network (LSTM) (Hochreiter
and Schmidhuber, 1997) to SF. The LSTM model gives better SF performance compared to CRF, CNN,
and RNN. Ravuri and Stolcke (2015) compare the performance of vanilla RNN and LSTM for IC. They
find that the vanilla RNN works best for shorter utterances, while LSTM is better for longer utterances.

For the output layer, typically a softmax function is used for prediction at a particular time step. Yao
et al. (2014b) propose a R-CRF model combining the feature learning power of RNN and the sequence
level optimization of CRF for SF. The RNN + CRF scoring mechanism incorporates the features learned
from RNN and the transition scores of the slot slot labels. R-CRF outperforms CRF and vanilla RNN on
ATIS and on the Bing query understanding dataset. Table 2 summarizes the performance of independent
models on SF and IC.

1Gold named entity and syntactic information
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Input Model (Enc/Dec) Output Slot (F1) Intent(Err)
Xu and Sarikaya (2013) lexical CNN softmax 94.35 6.65
Yao et al. (2013) lexical Elman RNN softmax 94.11 -
Yao et al. (2013) lexical+NE Elman RNN softmax 96.60 -
Yao et al. (2014a) lexical LSTM softmax 94.85 -
Yao et al. (2014b) lexical+NE Elman RNN CRF 96.65 -
Mesnil et al. (2015) lexical Hybrid Elman + Jordan RNN softmax 95.06 -
Liu and Lane (2015) lexical Elman RNN with label sampling softmax 94.89 -
Vu et al. (2016) lexical bi-directional RNN softmax 94.92 -
Liu and Lane (2016) lexical bi-directional RNN+attention softmax 95.75 2.35
Kurata et al. (2016) lexical Encoder-Decoder LSTM softmax 95.40 -

Table 2: Comparison of independent SF and IC models and their performance on ATIS.

Takeaways on independent SF and IC models:
• Performance of RNN encoders (unidirectional) are Jordan ≤ Elman < LSTM. Bi-directional encod-

ing is additive to the performance of each encoder.
• Incorporating more context information is better for SF performance. Using global context informa-

tion, such as sentence level representation, and attention mechanisms (Kurata et al., 2016; Liu and
Lane, 2016) boosts performance of bi-directional encoder even further.

• When adding external features is possible, semantic features such as NE are more beneficial than
syntactic features for SF. When NE is used, it can boost the model performance for SF significantly.

• The slot filling task is related to Named Entity Recognition (NER) (Grishman and Sundheim, 1996)
task as slot values can be a named entity such as airline name, city name etc. If the slot filling task is
modeled as a sequence tagging problem, basically recent neural models proposed for NER can be used
for slot filling and vice versa. To know more about the recent development of neural NER models, one
can consult the survey from Yadav and Bethard (2018).

• The main disadvantage of independent models is that they do not exploit the interaction between intent
and slots and may introduce error propagation when they are used in a pipeline.

4 Joint Models for SF and IC

Figure 1: Left: Shared Bi-GRU encoder (Zhang and Wang, 2016). Middle: Slot-Gate Mechanism (Goo
et al., 2018). Right: BERT Based (Chen et al., 2019).

In Section 3 we reported approaches that treat SF and IC independently. However, as the two tasks
always appear together in an utterance and they share information, it is intuitive to think that they can
benefit each other. For instance, if the word ”The Beatles” is recognized as the slot ARTIST, then it is
more likely that the intent of the utterance is PLAYSONG rather than BOOKFLIGHT. On the other hand,
recognizing that the intent is PLAYSONG would help to recognize ”Hey Jude” as the slot ARTIST rather
than MOVIENAME.

Recent approaches model the relationship between SF and IC simultaneously in a joint model. These
approaches promote two-way information sharing between the two tasks instead of a one-way (pipeline).
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We describe several alternatives to exploit the relation between SF and IC: through parameter and state
sharing and gate mechanism.

4.1 Parameter and State Sharing

A pioneering work in joint modeling is Xu and Sarikaya (2013), which performs parameter sharing and
captures the relation between SF and IC through Tri-CRF (Jeong and Lee, 2008). The model uses CNN
as a shared encoder for both tasks and the produced hidden states are utilized for SF and IC. In addition
to features learned from the NN and from the slot label transition, Tri-CRF incorporates an additional
factor g to learn the correlation between the slot label assigned to each word and the intent assigned to
the utterance, which explicitly captures the dependency between the two tasks. A similar approach (Guo
et al., 2014), shares the node representation produced by Recursive Neural Network (RecNN) which
operates on the syntactic tree of the utterance. The node’s representation is shared among SF and IC.
Zhang and Wang (2016) use a shared bi-GRU encoder and a joint loss function between SF and IC
(Figure 1 Left), in which the loss function has weights associated with each tasks.

Liu and Lane (2016) use a neural sequence to sequence (encoder-decoder) model with attention mech-
anism commonly used for neural machine translation. The shared encoder is a bi-directional LSTM, and
the last hidden state of the encoder is then used by the decoder to generate a sequence of slot labels,
while for IC there is a separate decoder. The attention mechanism is used to learn alignments between
slot labels in the decoder and words in the encoder. Hakkani-Tür et al. (2016) also adopt parameter shar-
ing similar to Zhang and Wang (2016), but instead of using GRU they use a shared LSTM and perform
predictions for slots, intent, and also domain.

In a recent approach by Wang et al. (2018) propose a bi-model based structure to learn the cross-
impact between SF and IC. They argue that a single model for two tasks can hurt performance, and,
instead of sharing parameters, they use two-task networks to learn the cross-impact between the two
tasks and only share the hidden state of the other task. In the model, every hidden state h1t in the
first network is combined with the hidden state of the second network h2t , and vice versa. Training
is also done asynchronously, as each model has a separate loss function. Qin et al. Qin et al. (2019)
use a self-attentive shared encoder to produce better context-aware representations, then apply IC at
the token level and use this information to guide the SF task. They argue that previous work based on
single utterance-level intent prediction is more prone to error propagation. If some token-level intent is
incorrectly predicted, the other correct token-level prediction can still be useful for corresponding SF.
For the final IC prediction, they use a voting mechanism to take into account the IC prediction on each
token.

Chen et al. (2019) use a Transformer (Vaswani et al., 2017) model for joint SF and IC by fine-tuning
a pre-trained BERT (Devlin et al., 2019) model (Figure 1 Right). The input is passed through several
layers of transformer encoders and the hidden state outputs are used to compute slot and intent labels.
The hidden state hCLS is used for IC2 while the rest of the hidden states at each time step hi serve SF.

4.2 Slot-Intent Gate Mechanism

In addition to parameter and state sharing, a separate network with a slot gating mechanism was in-
troduced by Goo et al. (2018) to model the interaction between SF and IC more explicitly (Figure 1
Middle). In the encoder, a slot context vector for each time step, cSi , and a global intent context vector
cI are computed using an attention mechanism (Bahdanau et al., 2015). The slot-gate gs is computed as
a function of cSi and cI , gs =

∑
v · tanh(cSi +W · cI). Then, gs is used as a weight between hi and

cSi to compute ysloti as follows: ysloti = softmax(W (hi + g
s · cSi )). Larger gs indicates a stronger

correlation between cSi and cI .
E et al. (2019) propose a bi-directional model, SF-ID (SF-Intent Detection) network, sharing ideas

with Goo et al. (2018), with two key differences. First, in addition to the slot-gated mechanism, they
add an intent-gated mechanism as well. Second, they use an iterative mechanism between the SF and
ID network, meaning that the gate vector from SF is injected into the ID network and vice versa. This

2[CLS] is a special token in BERT input format that often used as the sentence representation.
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mechanism is repeated for an arbitrary number of iteration. Compared to (Goo et al., 2018), the SF-ID
network performs better both in SF and IC on ATIS and SNIPS. The work from Li et al. (2018) is also
similar to Goo et al. (2018) with two differences. First, they use a self-attention mechanism (Vaswani
et al., 2017) to compute cSi . Secondly, they use a separate network to compute gate vector gs, but the
input of this network is the concatenation of cSi and the intent embedding v, and gs is defined as gs =
tanh(W g[cislot, v

intent] + bs). After that, hi is combined with gs through element-wise multiplication
to compute ysi as follows: ysloti = softmax(W s(hi � gs) + bs). They report a +0.5% improvement on
SF over Liu and Lane (2016). A recent work by Zhang et al. (2019), further improves the performance
of the BERT based model by adding a gate mechanism (Li et al., 2018) to the BERT model. Table 3
compares the performance of the joint models.

Method Model
ATIS SNIPS

Slot Intent Slot Intent
F1 Acc/Err F1 Acc/Err

Parameter & State Sharing
Xu and Sarikaya (2013) CNN + Tri-CRF 95.42 -/5.91 - -
Guo et al. (2014) Recursive NN 93.96 95.40 - -
Zhang and Wang (2016) Joint Multi-Task,Bi-GRU 95.49 98.10 - -
Liu and Lane (2016) Seq2Seq + Attention 94.20 91.10 87.80 96.70
Hakkani-Tür et al. (2016) Bi-LSTM 94.30 92.60 87.30 96.90
Qin et al. (2019) Token-Level IC + Self-Attention 95.90 96.90 94.20 98.00
Chen et al. (2019) Transformer (BERT) 96.10 97.50 97.00 98.60

State Sharing
Wang et al. (2018) Bi-model, BiLSTM 96.89 98.99 - -

Slot-Intent Gating
Goo et al. (2018) Slot-Gated Full Attention 94.80 93.60 88.80 97.70
Li et al. (2018) BiLSTM + Self-Attention 96.52 -/1.23 - -
E et al. (2019) SF-ID Network 95.75 97.76 91.43 97.43

Hybrid Param Sharing + Gating
Zhang et al. (2019) BERT + Intent-Gate 98.75 99.76 98.78 98.96

Table 3: Performance comparison of joint models for SF and IC on ATIS and SNIPS-NLU.

Takeaways on joint SF and IC models:

• The overall performance of joint models for SF and IC (Table 2) is competitive with independent
models (Table 3). The advantage of joint models is that they have relatively less parameters than
independent models, as both tasks are trained on a single model.

• When computational power is not an issue, fine-tuning a pre-trained model such as BERT is the way
to go for maximum SF and IC performance. Hybrid methods combining parameter and state sharing +
intent gating yield the best performance (Zhang et al., 2019).

• For the non BERT-based model, using state sharing (Wang et al., 2018) is the best on ATIS. However,
the disadvantage is that it is actually a bi-model and not a single model.

• Similar to independent models, contextual information is crucial to performance. Adding a self-
attention mechanism (Qin et al., 2019; Li et al., 2018) to either parameter and state sharing or to
slot-intent gating can boost performance even further.

• When sufficiently large in-domain training data is available, the SF and IC performance in ATIS and
SNIPS is already saturated. Therefore, further research on this classic leaderboard chase is not worth
it. We discuss more about that in Section 6.

• Most of the work in joint models and also independent models (Section §3) reports F1 scores for slot
filling performance. However, these scores do not reveal in which specific cases these models behave
differently, contributing to overall performance. We leave further analysis on model performance as a
potential future work.
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5 Scaling to New Domains

So far, the models that we consider in Section §3 and Section §4 are designed to be trained on a single
domain (e.g. banking, restaurant reservation) and require relatively large labeled data to perform well.
In practice, new intents and slots are regularly added to a system to support new tasks and domains,
requiring data and time intensive processes. Hence, methods to train models for new domains with
limited or without labeled data are needed. We refer to this situation as the domain scaling problem.

Figure 2: Left: Data-driven approach (Jaech et al., 2016; Hakkani-Tür et al., 2016). Middle: Model-
Driven Approach with expert models (Kim et al., 2017). Right: Zero-shot model (Bapna et al., 2017).

5.1 Transfer Learning Models for SF and IC

A common approach to deal with domain scaling is transfer learning (TF).3 In the TF setup we have
K source domains D1

S ,D2
S , . . . ,DK

S and a target domain DK+1
T , and we assume abundance of data in

DS and limited data in DT . Instead of training a target model MT for DT from scratch, TF aims to
adapt the learned modelMS from DS to produce a modelMT trained on DT . TF is typically applied
with various parameter sharing and training mechanisms. For SF and IC two approaches are proposed,
namely data-driven and model- driven. As for data-driven techniques, typically we combine data from
DS and DT and we partition the parameters in the model into parts that are task-specific and parameters
that are shared across tasks. Some studies (Jaech et al., 2016; Hakkani-Tür et al., 2016; Louvan and
Magnini, 2019) apply this technique using multi-task learning (MTL) (Caruana, 1997) and the models
are trained simultaneously on DS and DT (Figure 2 Left). Results have shown that MTL is particularly
effective relative to single-task learning (STL) when the data in DT is scarce and the benefits over STL
diminish as more data is available. Another technique that is typically used in data-driven approaches
is based on pre-train and fine-tune mechanisms. Goyal et al. (2018) train a joint model of SF and IC,
MS , on large DS , then fine-tuneMS by replacing the output layer corresponding with the label space
from DT and train the model further on DT . Siddhant et al. (2019) also uses fine-tuning mechanism,
but the main difference with Goyal et al. (2018) is they leverage large unlabeled data to learn contextual
embedding, ELMo (Peters et al., 2018), before fine-tuning on DT .

As we need to train from scratch the whole model when adding a new domain, data-driven approaches,
especially MTL-based, need increasing training time as the number of domains grows. The alternative
strategy, the model-driven approach, alleviates the problem by enabling model reusability. Although
different domains have different slot schemas, slots such as date, time and location can be shared. In
model driven adaptation ”expert” models (Figure 2 Middle) are first trained on these reusable slots (Kim
et al., 2017; Jha et al., 2018) and the outputs of the expert models are used to guide the training ofMT

for a new target domain. This way the training time ofMT is faster, as it is proportional to the DT data
size, instead of the larger data size of the whole DS and DT . In this model-driven settings, Kim et al.
(2017) do not treat each expert model on each DS equally, instead they use attention mechanism to learn
a weighted combinations from the feedback of the expert models. Jha et al. (2018) use a similar model as
Kim et al. (2017), however they do not use attention mechanism. For training the expert models, instead
of using all availableDS , they build a repository consisting of common slots, such as date, time, location

3We do not differentiate between domain adaptation and transfer learning in this paper.
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slots. The assumption is that these slots are potentially reusable in many target domains. Upon training
MS on this reusable repository, the output ofMS is directly used to guide the training ofMT .

5.2 Zero-shot Models for SF and IC

While data-driven and model-driven approaches can share knowledge learned on different domains, such
models are still trained on a pre-defined set of labels, and can not handle unseen labels, i.e. not mapped
to the existing schema. For example, a model trained to recognize a DESTINATION slot, can not be used
directly to recognize the slot ARRIVAL LOCATION for a new domain, although both slots are semanti-
cally similar. For this reason, researchers have recently been working on zero-shot models, trained on
label representations that leverage natural language descriptions of the slots (Bapna et al., 2017; Lee and
Jha, 2019). Assuming that accurate slot descriptions are provided, slots with different names although
semantically similar would have similar description as well. Thus, having trained a model for the DESTI-
NATION slot with its descriptions, it is now possible to recognize the slot ARRIVAL LOCATION without
training on it, but only supplying the corresponding slot description.

In addition to slot description, other zero-shot approaches explore the use of slot value examples (Shah
et al., 2019; Guerini et al., 2018). Shah et al. (2019) showing that a combination of a small number of slot
values examples with a slot description performs better than (Bapna et al., 2017; Lee and Jha, 2019) on
the SNIPS dataset. Zero-shot models are typically trained on a per-slot basis (Figure 2 Right), meaning
that if we have N slots, then the model will output N predictions, therefore, a merging mechanism
is needed in case there are prediction overlaps. In order to alleviate the problem of having multiple
predictions, Liu et al. (2020b) propose a coarse-to-fine approach, in which the model learns the slot
entity pattern (coarsely) to identify a particular token is an entity or not. After that, the model performs
a single prediction of the slot type (fine) based on the similarity between the feature representation and
the slot description.

Takeaways on scaling to new domains:
• Both data driven methods, MTL and pre-train fine tuning, improve performance when data in DT is

limited. Both are also flexible, as virtually many tasks from different domains can be plugged into
these methods. As the number of domains grow, pre-train and fine tuning is more desirable than MTL.
However, fine tuning is more prone to the forgetting problem (He et al., 2019) compared to MTL.

• When the number of domain, K, is massive, the pre-train fine tuning approach and model driven
approaches, such as expert based adaptation, are preferable with respect of training time.

• When there exists K existing domains and no annotation is available in DT , the choice is zero-shot
approaches with the expense of providing meta-information such as slot and intent descriptions.

• As typically zero-shot models perform prediction on a per-slot basis, potential disadvantages are model
accuracy when there is a prediction overlap and the model can also be computationally inefficient when
dealing with many slots.

6 State of the Art and Beyond

Based on the results in Table 2 and 3, it is evident that neural models have achieved outstanding perfor-
mance on ATIS and SNIPS, showing that it is relatively easy for neural models to capture patterns that
recognize slots and intents. ATIS, in particular, is already overused for SF and IC evaluations and recent
analysis (Béchet and Raymond, 2018; Niu and Penn, 2019) have shown that the dataset is relatively sim-
ple and the room for performance improvement is tiny. A similar trend in performance can be noted for
other datasets, such as SNIPS, and it is likely that performance improvement can be quickly saturated.
However, it does not mean these models have solved SF and IC, or NLU problems in general, rather that
the model has merely solved the datasets. Nevertheless, there are still a number of issues in SF and IC
that need further investigation:

Portable and Data Efficient Models. Instead of evaluating models with the typical leaderboard setup
with fixed (train/dev/test) splits on a specific target domain, it would be also important to test models in
different scenarios, so that different aspects of the model can be captured. For example, as neural models
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are data hungry, more work is still needed on transfer learning scenarios, where evaluation is carried out
with less or without labeled data (zero-shot) for a particular target domain. In addition, most models
for SF and IC are evaluated on English, which means that more effort is still needed to make models
that work well for other languages. Some recent works have started exploring zero-shot cross lingual
methods (Qin et al., 2020; Liu et al., 2020a; Liu et al., 2019) and also few-shot scenarios (Hou et al.,
2020) and the room for improvement for these scenarios is still large. In short, designing a data efficient
model that is portable across domains and languages is still a challenging problem for the coming future.

Leveraging unlabeled data from live traffic. In real situations, personal digital assistants such as
Google Home, Apple Siri and Amazon Alexa, receive live traffic data from real users. This large amount
of unlabeled data from live traffic is a potential data source for model training, in addition to in-house
annotated data. Unlabeled live data are likely different from in-house data, as they can contain more
diverse utterances and also noisy and irrelevant utterances. In this situation, existing methods to tap on
unlabeled data, such as semi-supervised learning, still face unique challenges to handle live data. It is
worth to note that a bottleneck in this direction is that working on live data in academic settings is not
trivial. Some recent works explore this line of research by applying semi-supervised learning (Cho et al.,
2019) and also data selection (Do and Gaspers, 2019) mechanism.

Generative Models. Most of the proposed models are discriminative, among the few works carried
out for generative models for SF and IC, (Raymond and Riccardi, 2007; Yogatama et al., 2017) have
shown that a generative model is relatively better than a discriminative model in a situation where data
is scarce. One possible direction for generative models is to apply data augmentation to automatically
create additional training data (Yoo et al., 2019; Zhao et al., 2019; Hou et al., 2018; Kurata et al., 2016;
Peng et al., 2020; Kim et al., 2019). The main challenge for data augmentation is to generate diverse and
fluent synthetic utterance, which preserve the semantics of the original utterance.

Evaluation of SF and IC on more complex dataset. Existing neural approaches typically evalu-
ated on single-intent utterance, however in a real-world scenario users may indicate multiple-intent in
an utterance e.g. ”Show me all flights from Atlanta to London and get the cost” (Gangadharaiah and
Narayanaswamy, 2019) or even expressing multiple sentences in one single turn. While most datasets for
slot filling and intent classification are single-turn utterance, there are some recent multi-turn datasets that
provide slot annotation on the token-level, namely the RESTAURANT-8K, TaskMaster-1 and 2 (Byrne
et al., 2019), and Frame (Asri et al., 2017) datasets. The subset of Schema Guided Dialogue (SGD)
dataset (Rastogi et al., 2020) used in DTSC-8 is also annotated with slots in the token-level and cov-
ers 16 domains. In addition to that, the TOP dataset (Gupta et al., 2018) introduces datasets annotated
with hierarchical representation and MTOP dataset (Li et al., 2020) provides both flat and hierarchical
representation on 6 languages across 11 domains.

7 Conclusion

We have surveyed recent neural-based models applied to SF and IC in the context of task-oriented di-
alogue systems. We examined three approaches, i.e. independent, joint, and transfer learning based
models. Joint models exploiting the relation between SF and IC simultaneously shown relatively bet-
ter performance than independent models. Empirical results have shown that most joint models nearly
”solve” widely used datasets, ATIS and SNIPS, given sufficient in-domain training data. Nevertheless,
there are still several challenges related to SF and IC, especially improving the scalability of the model
to new domains and languages when limited labeled data are available.
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Appendix A. SF and IC Dataset

Dataset Language # intent # slot # sentences train/dev/test

ATIS English 18 83 4,478 / 500 / 893

MEDIA French - 68 12,908/1,259/3,005

SNIPS-NLU English 7 39 13,084 / 700 / 700
Italian 7 39 5,742 /700 / 700

Facebook English 12 11 30,521 / 4,181 / 8,621
Multilingual Thai 12 11 3,617 / 1,983 / 3,043

Spanish 12 11 2,156 / 1,235 / 1,692

MIT Restaurant English - 8 6,128 / 1,532 / 1,521

MIT Movie English - 12 7,820 / 1,955 / 2,443

Table 4: Single-turn datasets statistics.
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