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Abstract

Recent work in Dialogue Act (DA) classification approaches the task as a sequence labeling
problem, using neural network models coupled with a Conditional Random Field (CRF) as the
last layer. CRF models the conditional probability of the target DA label sequence given the input
utterance sequence. However, the task involves another important input sequence, that of speakers,
which is ignored by previous work. To address this limitation, this paper proposes a simple
modification of the CRF layer that takes speaker-change into account. Experiments on the SwDA
corpus show that our modified CRF layer outperforms the original one, with very wide margins
for some DA labels. Further, visualizations demonstrate that our CRF layer can learn meaningful,
sophisticated transition patterns between DA label pairs conditioned on speaker-change in an
end-to-end way. Code is publicly available1.

1 Introduction

A conversation can be seen as a sequence of utterances. The task of Dialogue Act (DA) classifica-
tion aims at assigning to each utterance a DA label to represent its communicative intention. Dia-
logue acts originate from the notion of illocutionary force (speaker’s intention in delivering an ut-
terance) introduced back in the theory of Speech Act (Austin, 1962; Searle, 1969). DAs are as-
signed based on a combination of syntactic, semantic, and pragmatic criteria (Stolcke et al., 2000).

Change Speaker Utterance DA
- B Of course I use, sd

True A <laughter>. x
True B credit cards. +
False B I have a couple of credit cards sd
True A Yeah. b
True B and, uh, use them. +
True A Uh-huh, b
False A do you use them a lot? qy
True B Oh, we try not to. ng

Table 1: Fragment from SwDA conversation
sw3332. Statement-non-opinion (sd), Non-verbal
(x), Interruption (+), Acknowledge/Backchannel
(b), Yes-No-Question (qy), Negative non-no an-
swers (ng).

As shown in Table 1, some examples of DAs include stating,
questioning, answering, etc. The full set of DA labels is pre-
defined. A number of annotation schemes have been devel-
oped, varying from domain-specific, such as VERBMOBIL
(Alexanderssony et al., 1997), to domain-independent, such
as DAMSL (Allen and Core, 1997; Core and Allen, 1997)
and DiAML2 (Bunt et al., 2010; Bunt et al., 2012).

Automatically detecting DA labels is an essential step
towards describing the discourse structure of conversation
(Jurafsky et al., 1997). DAs are very useful annotations to a
large variety of spoken language understanding tasks, such
as utterance clustering (Shang et al., 2019), real-time infor-
mation retrieval (Meladianos et al., 2017), conversational
agents (Higashinaka et al., 2014; Ahmadvand et al., 2019), and summarization (Shang et al., 2018).

It is difficult to predict the DA of a single utterance without having access to the other utterances in
the context. For instance, for an utterance such as “Yeah”, it is hard to tell whether the associated DA
should be ‘Agreement’, ‘Yes answer’ or ‘Backchannel’. Plus, different labels have different transition
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probabilities to other labels. E.g., an initial greeting DA is very likely to be followed by another greeting
DA. Likewise, a question DA is more likely to be followed by an answer DA. To summarize, it is necessary
for a DA classification model to capture dependencies both at the utterance level and at the label level.
Recent works (Li and Wu, 2016; Tran et al., 2017; Liu et al., 2017; Kumar et al., 2018; Chen et al., 2018;
Raheja and Tetreault, 2019; Li et al., 2019) treat DA classification as a sequence labeling problem. The
BiLSTM-CRF model (Huang et al., 2015; Lample et al., 2016), originally introduced for the tasks of POS
tagging, chunking and named entity recognition, is the most widely used architecture. In it, a bidirectional
recurrent neural network with LSTM cells is first applied to capture the dependencies among consecutive
utterances, and then, a Conditional Random Field (CRF) layer is used to capture the dependencies among
consecutive DA labels.

CRF is a discriminative probabilistic graphical framework (Koller and Friedman, 2009; Sutton et al.,
2012) used to label sequences (Lafferty et al., 2001). It models the conditional probability of a target label
sequence given an input sequence. General CRF can essentially model any kind of graphical structure to
capture arbitrary dependencies among output variables. For NLP sequence labeling tasks, linear chain
CRF is the most common variant. The labels are arranged in a linear chain, i.e., only neighboring labels
are dependent (first-order Markov assumption). The BiLSTM-CRF architecture employs a linear chain
CRF. Hence, for brevity, in the rest of this paper, the term CRF is short for linear chain CRF.

Recently, neural versions of the CRF have been developed mainly for NLP sequence labeling tasks
(Collobert et al., 2011; Huang et al., 2015; Lample et al., 2016). While traditional CRF requires defining
a potentially large set of handcrafted feature functions (each weighted with a parameter to be trained),
neural CRF has only two parameterized feature functions (emission and transition) that are trained with
the other parameters of the network in an end-to-end fashion.

2 Motivation

Most sequence labeling tasks in NLP, such as POS tagging, chunking, and named entity recognition,
involve only two sequences: input and target. In DA classification however, we have access to an
additional input sequence, that of speaker-identifiers. This extra input could, in principle, greatly improve
DA prediction. Indeed, research on turn management (Sacks et al., 1974) has shown that dialogue
participants do not start or stop speaking arbitrarily, but follow an underlying turn-taking system to occupy
or release the speaker role (Petukhova and Bunt, 2009). For instance, the last two utterances in Table 1
illustrate a non-arbitrary change of speakers, following a turn-allocation action (here, a question). In this
conversational situation, speaker B has to take the turn, to respond to speaker A. To sum up, the sequences
of DAs and speakers are tightly interconnected.

However, state-of-the-art DA classification models ignore the sequence of speaker-identifiers (Kumar
et al., 2018; Chen et al., 2018; Raheja and Tetreault, 2019; Li et al., 2019). This is a clear limitation.
To address this limitation, we propose in this paper a simple modification of the CRF layer where the
label transition matrix is conditioned on speaker-change. We evaluate our modified CRF layer within the
BiLSTM-CRF architecture, and find that on the SwDA corpus, it improves performance compared to the
original CRF. Furthermore, visualizations demonstrate that sophisticated transition patterns between DA
label pairs, conditioned on speaker-change, can be learned in an end-to-end way.

3 Related work

In this section, we first introduce the two major DA classification approaches, and then focus on previous
work involving the use of BiLSTM-CRF and speaker information.
Multi-class classification. In this first approach, consecutive DA labels are considered to be independent.
The DA label of each utterance is predicted in isolation by a classifier such as, e.g., naive Bayes (Grau
et al., 2004), Maxent (Venkataraman et al., 2005; Ang et al., 2005), or SVM (Liu, 2006). Since the first
application of neural networks to DA classification by Ries (1999), deep learning has shown promising
results even with some simple architectures (Khanpour et al., 2016; Shen and Lee, 2016). More recent work
developed more advanced models, and started taking into account the dependencies among consecutive
utterances (Kalchbrenner and Blunsom, 2013; Lee and Dernoncourt, 2016; Ortega and Vu, 2017; Bothe et
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al., 2018). For example, in Bothe et al. (2018), the representations of the current utterance and the three
preceding utterances are fed into a RNN, and the last annotation is used to predict the DA label of the
current utterance.
Sequence labeling. In the second approach, the DA labels for all the utterances in the conversation are
classified together. Traditional work uses statistical approaches such as Hidden Markov Models (HMM)
(Stolcke et al., 2000; Surendran and Levow, 2006; Tavafi et al., 2013) and CRFs (Lendvai and Geertzen,
2007; Zimmermann, 2009; Kim et al., 2010) with handcrafted features. In HMM based approaches, the
DA labels are hidden states and utterances are observations emanating from these states. The hidden states
are evolving according to a discourse grammar, which essentially is an n-gram language model trained
on DA label sequences. Following advances in deep learning, neural sequence labeling architectures
(Huang et al., 2015; Reimers and Gurevych, 2017; Yang et al., 2018; Cui and Zhang, 2019) have set new
state-of-the-art performance. Two major architectures have been tested: BiLSTM-Softmax (Li and Wu,
2016; Tran et al., 2017; Liu et al., 2017) and BiLSTM-CRF. This study focuses on the BiLSTM-CRF
architecture.
BiLSTM-CRF. Kumar et al. (2018) were the first to introduce the BiLSTM-CRF architecture for DA
classification. Their model is hierarchical and consists of two levels, where at level 1, the text of each
utterance is separately encoded by a shared bidirectional LSTM (BiLSTM) with last-pooling, resulting in
a sequence of vectors. At level 2, that sequence is passed through another BiLSTM topped by a CRF layer.
At test time, the optimal output label sequence is retrieved from the trained model by Viterbi algorithm
(Viterbi, 1967). Chen et al. (2018) and Raheja and Tetreault (2019) improved on the previous model by
adding different attention mechanisms. Li et al. (2019) discovered that performing topic classification
as an auxiliary task, can assist in predicting DA labels. The topic of each utterance is automatically
determined using Latent Dirichlet Allocation (Blei et al., 2003). Their model consists of two BiLSTM-
CRF architectures for predicting simultaneously the target DA label sequence and the target topic label
sequence. This model represents the state-of-the-art in DA classification.
Speaker information. There are only a few previous works that consider the sequence of speaker-
identifiers for DA classification. In Bothe et al. (2018), the utterance representation is the concatenation
of the one-hot encoded speaker-identifier, e.g., A as [1, 0] and B as [0, 1], with the output of the RNN-
based character-level utterance encoder. By contrast, Li and Wu (2016) and Liu et al. (2017) choose
to concatenate the speaker-change vector with the representation obtained via their CNN-based and
RNN-based word-level utterance encoders. Speaker-change is binary as shown in Table 1, obtained by
checking if the current utterance is from the same or different speaker as the previous one. Venkataraman
et al. (2005) also include speaker-change as one of the handcrafted features for their Maxent classifier.

Apart from the naive concatenation approaches described above, Kalchbrenner and Blunsom (2013)
proposed to let the recurrent and output weights of the RNN cell be conditioned on speaker-identifier,
i.e., a speaker-aware RNN cell. Stolcke et al. (2000) proposed to train different discourse grammars for
different speakers, to guide DA label transitions in HMM.

4 Model

Here, we describe the general BiLSTM-CRF model for DA classification, shown in Fig. 1. Then, in the
next section, we present our modification of the CRF layer that takes speaker-change into account.
Notation. Let us denote by {(xt, yt)}Tt=1 a conversation of length T . X = {xt}Tt=1 is the sequence of
utterances, where each utterance xt = {xtn}Nn=1 is itself a sequence of words of length N . Y = {yt}Tt=1

denotes the target sequence, where yt ∈ Y is the set of all possible DA labels of size |Y| = K. We use yt

to denote the label and its integer index interchangeably.
Utterance encoder. Each utterance is separately encoded by a shared forward RNN with LSTM cells.
Only the last annotation ut

N is retained (last pooling). We are left with a sequence of utterance embeddings
{ut}Tt=1.
BiLSTM layer. The sequence of utterance embeddings {ut}Tt=1 is then passed on to a bidirectional
LSTM, returning the sequence of conversation-level utterance representations {vt}Tt=1.
CRF layer. vt can already be used to predict locally the label at each time step in isolation, through a
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dense layer with softmax activation, which results in the BiLSTM-Softmax architecture. However this
might lead to a non-optimal global solution, if we consider the output DA label sequence as a whole.
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v1 v2 v3 v4

BiLSTM

u1 u2 u3 u4

CRF

Figure 1: BiLSTM-CRF, for an example with
{ut}T=4

t=1 (utterance embeddings) as input and
Q,A, S, S (DA labels) as target. Three possible
labels {Q,A, S} stand for Question, Answer, and
Statement, respectively.

On the other hand, CRF models the conditional probabil-
ity P (Y |X) of an entire target sequence Y given an entire
input sequence X . Thus, it guarantees an optimal global
solution, under the first order Markov assumption. More
precisely:

P (Y |X) =
exp(ψ(X,Y ))∑
Ỹ exp(ψ(X, Ỹ ))

(1)

where ψ(X,Y ) is a feature function that assigns a path
score to the label sequence Y , giving X . Then, a softmax
function is used to yield the conditional probability, where
Ỹ denotes one of all possible label sequences (paths).
ψ(X,Y ) is defined as the sum of emission scores (or state

scores) and transition scores over all time steps (Morris and
Fosler-Lussier, 2006; Chen and Moschitti, 2019):

ψ(X,Y ) =

T∑
t=1

h(yt, X) +

T−1∑
t=1

g(yt, yt+1) (2)

Emission (state) scores are assigned to the dashed top-down edges (nodes) in Fig. 1, computed as follows:

h(yt, X) = (Wvt + b)[yt] (3)

where the conversation-level utterance representation vt is converted into a vector of size K and [yt]
denotes the element at index yt. Higher values of h(yt, X) indicate that the model is more confident in
predicting the output label yt at time step t.
Transition scores are assigned to the solid left-to-right edges in Fig. 1, computed as follows:

g(yt, yt+1) = G[yt, yt+1] (4)

where G is the label transition matrix of size K ×K. E.g, the element G[yt, yt+1] is the transition score
from label yt to label yt+1. Note that the transition matrix is shared across all time steps.

The CRF layer is parameterized by W, b, and G. To learn these parameters and those of the previous
layers, maximum likelihood estimation is used. For a training set of M conversations, the loss can be
written as:

L =

M∑
m=1

− logP (Y m|Xm) (5)

At test time, the optimal output label sequence, i.e., Y ∗ = argmaxỸ P (Ỹ |X) for unseen X , is obtained
with the Viterbi decoding algorithm (Viterbi, 1967). Due to the Markov property of the linear chain CRF,
the computations of Viterbi algorithm and the normalization term in Eq. 1 can be broken down into a
series of sub-problems over time in a recursive manner, which are solved via dynamic programming
(Bellman, 1966), with polynomial complexity O(TK2).

5 Our contribution

Given the sequence of speaker-identifiers S = {st}Tt=1, we can instantly derive the sequence of speaker-
changes Z = {zt,t+1}T−1

t=1 by comparing neighbors. E.g., z2,3 = 0 means the speaker does not change
from time t = 2 to t = 3.

We extend the original CRF so that it considers as additional input, the sequence Z. That is, CRF now
models P (Y |X,Z) instead of just P (Y |X). In other words, the prediction of the DA label sequence is
now conditioned both on the utterance sequence and the speaker-change sequence. Specifically, transition
scores in our modified CRF layer are computed as follows:
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g(yt, yt+1, zt,t+1) =(1− zt,t+1) ∗G0[y
t, yt+1]+

zt,t+1 ∗G1[y
t, yt+1] (6)

where G0 and G1 are label transition matrices of size K ×K, corresponding respectively to the “speaker
unchanged” and “speaker changed” cases.

6 Experimental setup

Dataset. We experiment on the widely-used SwDA3 (Switchboard Dialogue Act) dataset (Jurafsky et al.,
1997; Stolcke et al., 2000). This corpus contains telephone conversations recorded between two randomly
selected speakers talking about one of various general topics (air pollution, music, football, etc.). In this
dataset, utterances are annotated with 42 mutually exclusive DA labels, based on the SWBD-DAMSL
annotation scheme (Jurafsky et al., 1997). Inter-annotator agreement is 84%. The frequency of the 10
most represented DA labels are illustrated in Fig. 2. We can see that labels are highly imbalanced and
follow a long-tailed distribution. Detailed statistics for all 42 labels are provided in Appendix B.

sd b sv % aa ba qy x ny fc
0

20K

40K

60K

36.9%

18.8%

12.9%

7.6%
5.5%

2.3% 2.3% 1.8% 1.5% 1.3%

Figure 2: Counts and frequencies of the 10 most
represented DA labels in the SwDA dataset. There
are 200444 utterances in total.

We adopt the same training, validation and testing parti-
tion as previous work (Lee and Dernoncourt, 2016)4, con-
sisting of 1003, 112, and 19 conversations, respectively.
A note about the ‘+’ tag. The ‘+’ tag, as shown in Table 1,
accounts for 8.1% of the total annotations, but is not part of
the default label set. That tag is used to mark the remaining
parts of an utterance that has been interrupted by the other
speaker. While most of the previous works did not predict,
or even mention this tag, some efforts considered it as a
43rd DA label and predicted it (Lee and Dernoncourt, 2016;
Raheja and Tetreault, 2019).

In this paper, we followed the approach of (Webb et al.,
2005; Milajevs and Purver, 2014; Kim et al., 2017), and used the ‘+’ tag to reconnect, bottom-up,
all the parts of an interrupted utterance together. E.g., in Table 1, the parts “Of course I use,” and
“credit cards.”, uttered by speaker B, are reconnected into “Of course I use, credit cards.”,
which becomes the new first utterance. It is followed by “<laughter>”, uttered by speaker A. We opted
for this approach as predicting the DA of a broken utterance sometimes does not make sense. For in-
stance, in this situation with three utterances: (1) “A: so, (Wh-Question)”, (2) “B: <throat clearing>

(Non-verbal)”, and (3) “A: what’s your name? (+)”, it is very difficult to correctly predict that ut-
terance 1 is a question. And predicting anything other than a question-related tag for utterance 3 does
not really make sense. Reconstructing 1 and 3 into a single utterance “A: so, what’s your name?

(Wh-Question)” solves both issues.
Implementation and training details. Disfluency markers (Meteer et al., 1995) were filtered out and
all characters converted to lowercase. We used some optimal hyperparameters provided by Kumar et
al. (2018). E.g., 0.2 dropout was applied to the utterance embeddings and conversation-level utterance
representations, and all LSTM layers had 300 hidden units. The embedding layer was initialized using
300-dimensional word vectors pre-trained with the gensim (Řehůřek and Sojka, 2010) implementation
of word2vec (Mikolov et al., 2013) on the utterances of the training set, and was frozen during training.
Vocabulary size was around 21K, and out-of-vocabulary words were mapped to a special token [UNK],
randomly initialized.

Models were trained with the Adam optimizer (Kingma and Ba, 2015). Early stopping was used on the
validation set with a patience of 5 epochs and a maximum number of epochs of 100. The best epoch was
selected as the one associated with the highest validation accuracy. Usually, the best epoch was within the
first 10. We set our batch-size to be 1, i.e, one conversation for one training step. Batch sizes of 1, 2, 4, 8,
and 16 were also tried, without observing significant differences.

3https://github.com/cgpotts/swda
4https://github.com/Franck-Dernoncourt/naacl2016
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sd b sv % aa ba qy x ny fc

Statement-non-opinion (sd)

Acknowledge/Backchannel (b)

Statement-opinion (sv)

Abandoned/Uninterpretable (%)

Agree/Accept (aa)

Appreciation (ba)

Yes-No-Question (qy)

Non-verbal (x)

Yes answers (ny)

Conventional-closing (fc)

86.4 0.0 9.5 2.3 0.2 0.2 0.1 0.1 0.0 0.0

0.0 91.0 0.0 2.5 4.0 0.4 0.1 0.0 0.8 0.1

26.6 0.0 67.4 2.1 0.9 1.9 0.0 0.0 0.0 0.1

3.9 7.6 3.9 81.3 1.1 0.5 0.3 0.0 0.3 0.0

2.6 21.4 3.3 0.3 67.9 3.1 0.2 0.0 0.6 0.1

1.4 1.2 6.8 1.4 4.1 82.0 0.0 1.6 0.0 0.0

2.5 0.0 2.7 0.6 0.2 0.0 81.7 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.9 0.0 1.1

0.0 22.1 0.0 0.0 4.9 0.0 0.0 0.0 73.0 0.0

1.7 2.1 0.4 0.0 0.5 0.0 0.0 0.0 0.0 93.8

sd b sv % aa ba qy x ny fc

88.3 0.0 7.8 2.0 0.2 0.2 0.1 0.0 0.0 0.1

0.0 89.4 0.0 2.9 4.9 0.3 0.1 0.0 1.0 0.1

32.4 0.0 61.5 1.8 1.0 2.4 0.1 0.0 0.0 0.1

4.9 8.1 3.8 79.5 1.6 0.4 0.3 0.0 0.2 0.0

3.6 25.3 2.3 0.2 63.8 3.2 0.4 0.0 0.9 0.1

2.9 1.1 5.5 1.3 4.5 82.4 0.0 1.1 0.0 0.0

3.0 0.0 2.6 0.2 0.0 0.0 81.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.9 0.0 1.1

0.0 21.6 0.0 0.0 4.0 0.0 0.0 0.0 74.2 0.0

1.5 2.5 0.1 0.0 0.4 0.0 0.0 0.0 0.0 93.6
0

20

40

60

80

100

Figure 3: Normalized confusion matrices, averaged over 10 runs, for the 10 most frequent DA labels
(90.9% of all annotations). Left: our model, right: base model. Rows (columns) correspond to true
(predicted) classes.

7 Quantitative results

Performance comparison. Table 2 reports the results in terms of classification accuracy, averaged over
10 runs to account for the randomness of SGD. Model a) uses our modified CRF layer. Model b) has
exactly the same architecture as a), but uses a vanilla CRF layer.

Results show that, in terms of overall accuracy on the test set of 42 DA labels, our model a) outperforms
the base model b) by 1%. Moreover, the small standard deviations highlight the consistency of this
improvement over the 10 runs. Note that this performance gain is solely caused by our modified CRF
layer capturing speaker-change, and is greater than the gains of 0.26% (Liu et al., 2017) and 0.09% (Bothe
et al., 2018) reported by previous attempts at leveraging speaker information.

To interpret the results in more detail, we show in Fig. 3 the confusion matrices of our model and the
base model, for the 10 most frequent DA labels, representing close to 91% of all annotations. The rows
correspond to true classes, and the columns to predicted classes.5 By looking at the diagonals, we can see
that our model (on the left) better predicts 6 labels out of 10 with absolute accuracy gains of up to 5.9%
(for statement-opinion, sv)6 and is on par with the baseline model for one label (non-verbal, x), at 98.9%.
By looking at off-diagonal values, miss rates are decreased up to 5.8% (for sv misclassified as sd) by our
model. Also, our model provides a large boost for the (Acknowledge/Backchannel, Agree/Accept), or (b,
aa) pair. It increases the respective accuracies by 1.6% (89.4%→91.0%) and 4.1% (63.8%→67.9%). The
respective miss rates are decreased by 0.9% (4.9%→4.0%) and 3.9% (25.3%→21.4%), respectively for b
misclassified as aa and aa misclassified as b. This is to be noted, as these two labels are among the most
frequently confused pairs (Kumar et al., 2018; Chen et al., 2018).

Although our model achieves significant gains on a majority of the most frequent labels, it decreases
performance for the most frequent label, sd, which accounts for 36.9% of all labels, as shown by Fig.
2. This explains why, in terms of overall accuracy, our improvements are modest. In addition, the
performance drop regarding sd can be interpreted as a consequence of the trade-off between sd and sv,
since the distinction between them was very hard to make even by annotators (Jurafsky et al., 1997). This
can be demonstrated in terms of precision, recall, and F1 score, as shown in Table 3. We can observe that,
as opposed to the base model, our model has lower sd and higher sv recall values. A similar observation
can be made for precision scores. Thus, the prediction between sd and sv is a trade-off made by models.
It is also interesting to note that our model is superior for both labels in terms of F1 score.

We can observe in Table 4 that our model brings improvement where it is most necessary, i.e., for the
most difficult and rare DAs (20%). Full details are provided in Appendix A, along with the corresponding

5Note that our confusion matrices were row-wise normalized by class size. So we use the terms accuracy (per class) to denote
diagonal values (equivalent to recall or hit rate), and miss rate for off-diagonal values.

6The margins are even larger (up to 20%) on some less frequent labels, as shown by the results in Appendix A.
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BiLSTM CRF Accuracy
Model input extra input (% ± SD)

a) Our CRF ut SC 78.70 ± .37
a1) ut + SI SC 78.32 ± .28
a2) ut + SC SC 78.65 ± .47
b) Vanilla CRF ut - 77.69 ± .38

b1) ut + SI - 77.86 ± .61
b2) ut + SC - 78.33 ± .71

c) Softmax ut - 77.80 ± .48
c1) ut + SI - 77.73 ± .44
c2) ut + SC - 78.33 ± .49

a) + b)
ut SC 78.89 ± .20

ensembling
a) + b)

ut SC 78.27 ± .47
joint training

Table 2: Results, averaged over 10 runs. SI: speaker-identifier, SC:
speaker-change, ut: utterance embedding, ±: standard deviation.

P R F1
Our sd 80.49 86.36 83.32

sv 71.54 67.41 69.42
Vanilla sd 77.83 88.32 82.74

sv 73.24 61.48 66.84

Table 3: Precison, Recall, and F1 score (%) of
our model vs. base model on the sd and sv
labels.

Ours Vanilla Diff.
10 best DAs 37.08 31.70 + 5.38
10 worst DAs 59.67 64.54 - 4.87

Table 4: Average accuracy (%) of our model
vs. base model on the 10 DAs best and worst
predicted by our model (resp. representing 20%
and 40% of all annotations).

confusion matrices.
The benefits of considering speaker information vary across DA labels. Our model and the base
model performed very closely on 4 labels: Non-verbal (x), Conventional-closing (fc), Appreciation
(ba), and Yes-No-Question (qy). We found that the utterances of these labels contain clear lexical
cues that can be mapped to corresponding DA labels in a non-ambiguous way. Some examples include
“<laughter>”→ x, “Bye-bye.” → fc, “That’s great.” → ba, and “Do you ...?” → qy. In other
words, predicting well these four DAs does not require having access to speaker information. It can be
done solely from the text of the current utterance. Having access to context is not even required. This
explain why our speaker-aware CRF is not helpful here.

This interpretation is supported by the fact that, as explained in Appendix A, our model is most useful
for the DAs that require speaker-change awareness.
Ensembling and joint training. Since the model using our CRF and the model using the vanilla CRF
appear to have their own strengths and weaknesses, we tried combining them to improve performance.
More precisely, we experimented with two approaches. First, an ensembling approach that combines the
predictions of the two trained models by averaging their emission and transition scores (respectively).
Second, a joint training approach that combines the two models into a new one and trains it from scratch.
In that second model, our CRF and the vanilla CRF are combined, and transition scores are computed as:

g(yt, yt+1, zt,t+1) = Gbasis[y
t, yt+1]+ (7)

(1− zt,t+1) ∗G0[y
t, yt+1] + zt,t+1 ∗G1[y

t, yt+1]

where Gbasis is the transition matrix as in the original CRF, used at each time step, while G0/G1 are
applied only when the speaker does not change/changes, as in our modified CRF layer.

Results in Table 2 show that the ensemble model reaches new best performance at 78.89, providing
close to a 0.2 boost from our model, and a 1.2 boost from the vanilla CRF model. On the other hand, the
jointly-trained model does not outperform our model. After inspecting the transition matrices for the two
cases (Gbasis +G0) and (Gbasis +G1), we found that the addition of Gbasis blurred the label transition
patterns.
Ablation studies. Our results showed that considering speaker information improves DA classification.
Then, we wanted to confirm whether our way of taking speaker information into account (at the CRF
level) was the most effective. To this purpose, we trained two other base models, both using the vanilla
CRF. These two models respectively concatenate the one-hot encoded speaker-identifier vector (noted SI,
of size 2) and the binary speaker-change vector (noted SC, of size 1) with the utterance embedding ut.7

Results, shown in rows b1 and b2 of Table 2, show that while they bring improvement compared to the

7proposed in Liu et al. (2017) and Bothe et al. (2018), but not in the context of BiLSTM-CRF.
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basic base model (row b), these two approaches are not able to yield as big of a gain as the model using
our modified CRF layer, indicating that taking speaker-change into account at the CRF level is superior.

For the sake of completeness, we repeated these experiments with our model. Results, available in rows
a1 and a2 of Table 2, show that performance was not improved (78.32 and 78.65 vs. 78.70). Thus, it
seems that taking speaker information into account twice, both at the BiLSTM level and at the CRF level,
is not useful, or at least, not in this way.

Results in Table 2 also show that SC is a better feature than SI in general.
BiLSTM-CRF vs. BiLSTM-Softmax. To the best of our knowledge, no previous study has compared
BiLSTM-CRF to BiLSTM-Softmax on the DA classification task. Hence, in this paper, we decided to
compare between these two models. Results reveal that the models using BiLSTM-Softmax (rows c,
c1, and c2) are competitive with the ones using BiLSTM-CRF (rows b, b1, and b2). More specifically,
BiLSTM-Softmax outperforms BiLSTM-CRF with text features only (rows b vs. c), by a slight 0.11
margin, but it is the opposite for text + SI (b1 vs. c1, 0.13 difference). With text + SC (b2 vs. c2), they
achieve similar performance.

These results are not very surprising, since, on other tasks than DA classification, multiple recent
works have reported that BiLSTM-CRF does not always outperform BiLSTM-Softmax (Reimers and
Gurevych, 2017; Yang et al., 2018; Cui and Zhang, 2019). For example, in Yang et al. (2018), CRF
brought improvement for named entity recognition and chunking, but not for POS tagging. One of the
reasons might be that the simple Markov label transition model of CRF does not give much information
gain over strong neural encoding (Cui and Zhang, 2019). That is, BiLSTM may be expressive enough to
implicitly capture the obvious dependencies among labels.

In any case, the model equipped with our CRF layer (row a) outperforms all variants of BiLSTM-
Softmax and BiLSTM-vanilla CRF. This suggests that our CRF layer can capture richer and not obvious
label dependencies given speaker information, which, in the end, makes the use of a CRF layer valuable
in assisting DA classification.

8 Qualitative results

qw qrr sd sv aa ar qy ny nn no bk b

Wh-Question (qw)
Or-Clause-Question (qrr)

Statement-non-opinion (sd)
Statement-opinion (sv)

Agree/Accept (aa)
Reject (ar)

Yes-No-Question (qy)
Yes answers (ny)
No answers (nn)

Other answers (no)
Response Acknowledgement (bk)

Acknowledge/Backchannel (b)
qw qrr sd sv aa ar qy ny nn no bk b

0.0

0.2

0.4

0.6

0.8
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Figure 4: Normalized transition matrices (averaged over 10 runs). Left and center: G0 (speaker unchanged)
and G1 (speaker changed) of our CRF layer. Right: G of vanilla CRF layer. The darker, the greater the
score.

Visualization of transition matrices. We illustrate, in Fig. 4, the transition matrices G0 and G1 of our
CRF layer, together with the single matrix G of the vanilla CRF layer. This visualization is done for
12 labels that are easy to interpret, such as statements, questions, answers, etc. We can observe some
interesting patterns, sometimes matching intuition, and sometimes harder to interpret. We report some of
the most interesting findings below:
1) Overall, G0 and G1 are not identical, which means that different transition patterns are associated with
the “speaker unchanged” and “speaker changed” cases. The dark diagonal of G0 shows that when the
speaker does not change, the majority of labels tend to carry over to the next utterance. On the opposite,
G1 clearly shows that changing speakers very often induce a change in DA.
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2) questions starting with words including: ‘what’, ‘how’, etc. (qw label) tend to transfer to statements
(sd and sv) and to other answers (no, e.g., “I don’t know”) if the speaker changed, but to other
forms of questions, yes-no questions and questions starting with the word ‘or’ (qy and qrr), or to
acknowledgements (bk and b) if the speaker did not change. This probably corresponds to instances
when the same speaker clarifies, elaborates on, or answers, an original question.
3) sv label (statement with opinion) tends to transition to Agree/Accept aa and Reject ar if the speaker
changed, while no such clear pattern can be observed for the sd label (statement without opinion).
4) qy label (yes/no questions) tend to transfer to answer labels ny (yes), nn (no), no (other) if the speaker
changed, and to another type of question (e.g., or-clause) if the speaker did not change. Again, the latter
surely corresponds to the case where a given speaker elaborates on his or her original question.
5) answer labels (ny, nn, no) tend to be followed by Response Acknowledgement bk and Acknowl-
edge/Backchannel b if the speaker changed, but by themselves or statements (sd and sv) if the speaker
did not change.

As far as the transition matrix G of the vanilla CRF layer (right of Fig. 4), we can observe that it tries to
capture, at the same time, the transition patterns of both the “speaker changed” and “speaker unchanged”
cases. For example, sv equally tends to transfer to sv, aa and ar in G, while the transitions towards
sv/aa,ar are only probable if the speaker stays the same/changes, as clearly illustrated by G0/G1.
Obviously, using two matrices as in our approach gives much more expressiveness to the model in
capturing DA label transition patterns. To summarize, visualizations show that the transition matrices G0

and G1 in our modified CRF layer are able to encode speaker-change-aware, sophisticated DA transition
patterns.

9 Discussion

Note that, for our utterance encoder, we also experimented with a bidirectional LSTM (also with last
pooling), as in Kumar et al. (2018), and with a bidirectional LSTM with self-attention mechanism (Yang
et al., 2016). However, since they were not giving better results, we opted for the simplest option. One
possible explanation for the self-attention mechanism not being helpful could be the very short size of the
utterances in the SwDA dataset (68.7% of utterances are shorter than 10 tokens). On such short sequences,
a RNN with a 300-dimensional hidden layer is very likely able to keep the full sequence into memory. As
far as why a forward RNN suffices, it should be noted that with last pooling, the last time step corresponds
to the first annotation of the backward RNN. This is not adding much information to the last annotation of
the forward RNN, which represents the entire sequence.

Our goal was not to exceed the state-of-the-art accuracy reported in Li et al. (2019) and Raheja and
Tetreault (2019), this is why we used simple models in all of our experiments. However, our improved
CRF layer can be directly plugged into more advanced architectures, such as Att-BiLSTM-CRF (Luo et
al., 2018) or Transformer-CRF (Chen et al., 2019; Zhang and Wang, 2019; Yan et al., 2019; Winata et al.,
2019), and should in principle be able to boost performance regardless of the model used.

Future research should be devoted to address the limitation of the Markov property of CRF layer, by
developing a model that is capable of capturing longer-range dependencies within and among the three
sequences: that of speakers, utterances, and DA labels.

10 Conclusion

In this paper, we focused on demonstrating that taking speaker information into consideration was
beneficial to the task of DA classification, with the BiLSTM-CRF architecture. We proposed a modified
CRF layer that takes as extra input the sequence of speaker-changes. Experiments conducted on the
SwDA dataset showed that our CRF layer outperforms vanilla CRF, and brings greater gains than previous
attempts at taking speaker information into account. Moreover, visualizations confirmed that our improved
CRF was able to learn complex speaker-change aware DA transition patterns in an end-to-end way.
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Appendix A. Worst and best case analysis

In this section, we interpret the confusion matrices for the 10 DA labels that our model best predicted (Fig.
5) and worst predicted (Fig. 6), in comparison with the base model, always on the right. Inspecting the
matrices reveals that our model is most useful for the DAs requiring speaker-change awareness, which
confirms the effectiveness of our modification of the CRF layer. It also shows that our model brings
improvement where it is most necessary, i.e., for the most difficult and rare DAs.

Relative differences. For the 10 DA labels best predicted by our model, the average performance gain
compared to the base model is equal to 5.38 (shown in Table 4), whereas the drop in performance for the
10 DAs worst predicted by our model is lower, only equal to 4.87. Thus, when it improves performance,
our model does so with a greater margin than when it decreases performance. This fact is hidden when
simply looking at the global accuracy over the 42 DA labels, because the 10 best DAs for our model only
correspond to 20.2% of all annotations, whereas the 10 worst account for almost 40% of all annotations.
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t1 sv ^2 aa no b^m ar ft bf qh
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Figure 5: Normalized confusion matrices, averaged over 10 runs, for the 10 DA labels best predicted by
our model (20.2% of all annotations). Left: our model, right: base model.
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Backchannel in question form (bh)

Conventional-opening (fp)

Or-Clause-Question (qrr)

Quotation (^q)

Hold before answer/agreement (^h)

Declarative Yes-No-Question (qy^d)

Negative non-no answers (ng)

Statement-non-opinion (sd)
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0.0 0.0 0.0 90.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 40.0 0.0 1.8 0.0 30.0 0.0

0.0 0.0 0.0 0.0 0.0 18.6 0.0 0.0 52.9 0.0

0.0 0.8 0.0 0.0 0.0 0.0 19.2 0.0 27.8 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 58.320.0 0.0

0.0 0.0 0.0 0.0 0.2 0.0 0.3 0.0 86.4 0.0

0.0 0.0 2.5 0.0 1.2 6.9 0.0 0.0 9.4 56.2

bd bh fp qrr ^q ^hqy^d ng sd ot

100.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 67.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 84.0 0.0 0.0 0.0 0.0 0.0 2.0 14.0

0.0 0.0 0.0 95.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 44.7 0.0 1.2 0.0 24.7 0.0

0.0 0.0 0.0 0.0 0.0 22.9 0.0 0.0 52.9 0.0

0.0 1.4 0.0 0.0 0.0 0.0 23.1 0.0 35.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 61.713.3 0.0

0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.1 88.3 0.0

0.0 0.0 1.9 0.0 0.0 5.0 0.0 0.0 12.558.1
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Figure 6: Normalized confusion matrices, averaged over 10 runs, for the 10 DA labels worst predicted by
our model (39.6% of all annotations). Left: our model, right: base model.

Absolute differences. It is also interesting to note that the 10 DAs that our model best predicted are all
very difficult DAs, for which the performance of the base model is very low in the first place: 31.7, on
average. These DAs are also rare: they only correspond to 20.2% of all annotations. Our model raises the
average accuracy on these labels to 37.08. On the other hand, the 10 DAs that are worst predicted by our
model are more frequent DAs (40% of all annotations), for which the performance of the base model is
already quite high: 64.54, on average. And although our model is not as good as the base model on these
DAs, it still reaches a decent average performance of 59.67. Therefore, our model provides a performance
boost where it is most necessary (difficult and rare DAs), and wherever it fails, it still provides decent
accuracy levels.

10 best DAs for our model. Our model outperforms the base model by a very large margin of 20.0%
(20.0%→40.0%) for Self-talk (t1, the speaker talks to him/herself). It makes a lot of sense, as the
accurate prediction of this DA obviously requires being aware of speaker-change. Similar conclusions
can be also drawn for Collaborative Completion (ˆ2, one speaker completes the other speaker’s
utterance), Repeat-phrase (bˆm, repeating parts of what the previous speaker said), Thanking (ft),
Summarize/reformulate (bf, proposing a summarization or paraphrase of another speaker’s talk/point),
and Rhetorical-Questions (qh, questions asked to make a statement or asked to produce an effect with no
answer expected).

10 worst DAs for our model. On the other hand, speaker information does not seem to be crucial to
predict the 10 DA labels most often missed by our model. For instance, Conventional-openings (fp) are
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always found among the first utterances in a conversation, so there is only a small need for speaker-change
awareness in that case. E.g., in this situation with three utterances: (1) “A: Hi, Wanet (fp)”, (2) “A:
How are you? (fp)”, and (3) “B: I’m doing fine. (fp)”, utterances 2 and 3 are labeled with fp,
regardless of speaker-change. Likewise, the need for speaker-change awareness seems very little for the
Quotation (ˆq) and Other (ot) DAs. In other words, among the DAs worst predicted by our model are DAs
for which speaker information is not necessary to make an accurate prediction. This makes sense, since
the goal of our modified CRF layer is precisely to capture speaker information.

Appendix B. DA label statistics

Dialogue Act (label) count frequency Dialogue Act (label) count frequency
Statement-non-opinion (sd) 73873 36.85% Collaborative Completion (ˆ2) 709 0.35%

Acknowledge/Backchannel (b) 37727 18.82% Repeat-phrase (bˆm) 677 0.34%
Statement-opinion (sv) 25810 12.88% Open-Question (qo) 647 0.32%

Abandoned/Uninterpretable (%) 15294 7.63% Rhetorical-Questions (qh) 566 0.28%
Agree/Accept (aa) 10987 5.48% Hold before answer/agreement (ˆh) 546 0.27%
Appreciation (ba) 4702 2.35% Reject (ar) 341 0.17%

Yes-No-Question (qy) 4679 2.33% Negative non-no answers (ng) 296 0.15%
Non-verbal (x) 3565 1.78% Signal-non-understanding (br) 295 0.15%

Yes answers (ny) 2995 1.49% Other answers (no) 284 0.14%
Conventional-closing (fc) 2562 1.28% Conventional-opening (fp) 225 0.11%

Wh-Question (qw) 1954 0.97% Or-Clause Question (qrr) 208 0.10%
No answers (nn) 1363 0.68% Dispreferred answers (arp nd) 207 0.10%

Response Acknowledgement (bk) 1299 0.65% 3rd-party-talk (t3) 115 0.06%
Hedge (h) 1204 0.60% Offers, Options, Commits (oo co cc) 109 0.05%

Declarative Yes-No-Question (qyˆd) 1203 0.60% Maybe/Accept-part (aap am) 105 0.05%
Backchannel in question form (bh) 1036 0.52% Self-talk (t1) 103 0.05%

Quotation (ˆq) 948 0.47% Downplayer (bd) 101 0.05%
Summarize/reformulate (bf) 928 0.46% Tag-Question (ˆg) 92 0.05%

Other (ot) 876 0.44% Declarative Wh-Question (qwˆd) 80 0.04%
Affirmative non-yes answers (na) 841 0.42% Apology (fa) 78 0.04%

Action-directive (ad) 740 0.37% Thanking (ft) 74 0.04%

Table 3: Counts and frequencies of the 42 DA labels in the SwDA dataset. There are 200444 utterances in
total.


