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Abstract

We describe two end-to-end autoencoding models for semi-supervised graph-based projective
dependency parsing. The first model is a Locally Autoencoding Parser (LAP) encoding the in-
put using continuous latent variables in a sequential manner; The second model is a Globally
Autoencoding Parser (GAP) encoding the input into dependency trees as latent variables, with
exact inference. Both models consist of two parts: an encoder enhanced by deep neural networks
(DNN) that can utilize the contextual information to encode the input into latent variables, and a
decoder which is a generative model able to reconstruct the input. Both LAP and GAP admit a
unified structure with different loss functions for labeled and unlabeled data with shared param-
eters. We conducted experiments on WSJ and UD dependency parsing data sets, showing that
our models can exploit the unlabeled data to improve the performance given a limited amount of
labeled data, and outperform a previously proposed semi-supervised model.

1 Introduction

Dependency parsing captures bi-lexical relationships by constructing directional arcs between words,
defining a head-modifier syntactic structure for sentences, as shown in Figure 1. Dependency trees are
fundamental for many downstream tasks such as semantic parsing [Reddy et al., 2016; Marcheggiani and
Titov, 2017], machine translation [Bastings et al., 2017; Ding and Palmer, 2007], information extraction
[Culotta and Sorensen, 2004; Liu et al., 2015] and question answering [Cui et al., 2005]. As a result,
efficient parsers [Kiperwasser and Goldberg, 2016; Dozat and Manning, 2017; Dozat et al., 2017; Ma et
al., 2018] have been developed using various neural architectures.
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Figure 1: A dependency tree: directional arcs represent head-modifier relation between words.

Despite the success of supervised approaches, they require large amounts of labeled data, particularly
when neural architectures are used. Syntactic annotation is notoriously difficult and requires specialized
linguistic expertise, posing a serious challenge for low-resource languages. Semi-supervised parsing
aims to alleviate this problem by combining a small amount of labeled data and a large amount of
unlabeled data, to improve parsing performance over labeled data alone. Traditional semi-supervised
parsers use unlabeled data to generate additional features, assisting the learning process [Koo et al.,
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2008], together with different variants of self-training [Søgaard, 2010]. However, these are usually pipe-
lined and error-propagation may occur.

In this paper, we propose two end-to-end semi-supervised parsers, illustrated in Figure 2, namely
Locally Autoencoding Parser (LAP) and Globally Autoencoding Parser (GAP). In LAP, the autoencoder
model uses unlabeled examples to learn continuous latent variables of the sentence, which are then used
to support tree inference by providing an enriched representation. Unlike LAP which does not perform
tree inference when learning from unlabeled examples, in GAP, the dependency trees corresponding to
the input sentences are treated as latent variables, and as a result the information learned from unlabeled
data aligns better with the final tree prediction task.

Unfortunately, regarding trees as latent variables may cause the computation to be intractable, as
the number of possible dependency trees to enumerate is exponentially large. A recent work [Corro
and Titov, 2018], dealt with this difficulty by regenerating a particular tree of high possibility through
sampling. In this study, we suggest a tractable algorithm for GAP, to directly compute all the possible
dependency trees in an arc-decomposed manner, providing a tighter bound compared to [Corro and
Titov, 2018]’s with lower time complexity. We demonstrate these advantages empirically by evaluating
our model on two dependency parsing data sets. We summarize our contributions as follows:
1. We proposed two autoencoding parsers for semi-supervised dependency parsing, with complementary

strengths, trading off speed vs. accuracy;
2. We propose a tractable inference algorithm to compute the expectation of the latent dependency tree

analytically for GAP, which is naturally extendable to other tree-structured graphical models;
3. We show improved performance of both LAP and GAP with unlabeled data on WSJ and UD data sets

over using labeled data alone, and over a recent semi-supervised parser [Corro and Titov, 2018].

2 Related Work

Most dependency parsing studies fall into two major groups: graph-based and transition-based [Kubler et
al., 2009]. Graph-based parsers [McDonald, 2006] regard parsing as a structured prediction problem to
find the most probable tree, while transition-based parsers [Nivre, 2004, 2008] treat parsing as a sequence
of actions at different stages leading to a complete dependency tree.

While earlier works relied on manual feature engineering, in recent years the hand-crafted features
were replaced by embeddings and deep neural network architectures that were used to learn representa-
tion for scoring structural decisions, leading to improved performance in both graph-based and transition-
based parsing [Nivre, 2014; Pei et al., 2015; Chen and Manning, 2014; Dyer et al., 2015; Weiss et al.,
2015; Andor et al., 2016; Kiperwasser and Goldberg, 2016; Wiseman and Rush, 2016].

The annotation difficulty for this task, has also motivated work on unsupervised (grammar induction)
and semi-supervised approaches to parsing [Tu and Honavar, 2012; Jiang et al., 2016; Koo et al., 2008;
Li et al., 2014; Kiperwasser and Goldberg, 2015; Cai et al., 2017; Corro and Titov, 2018]. It also leads
to advances in using unlabeled data for constituent grammar [Shen et al., 2018b,a]

Similar to other structured prediction tasks, directly optimizing the objective is difficult when the
underlying probabilistic model requires marginalizing over the dependency trees. Variational approaches
have been widely applied to alleviating this problem, as they try to improve the lower bound of the
original objective, and were employed in several recent NLP works [Stratos, 2019; Chen et al., 2018;
Kim et al., 2019b,a]. Variational Autoencoder (VAE) [Kingma and Welling, 2014] is particularly useful
for latent representation learning, and is studied in semi-supervised context as the Conditional VAE
(CVAE) [Sohn et al., 2015]. Note our work differs from VAE as VAE is designed for tabular data but not
for structured prediction, as in our circumstance, the input are the sentential tokens and the output is the
dependency tree.

The work mostly related to ours is Corro and Titov [2018]’s as they consider the dependency tree as
the latent variable, but their work takes a second approximation to the variational lower bound by an
extra step to sample from the latent dependency tree, without identifying a tractable inference. We show
that with the given structure, exact inference on the lower bound is achievable without approximation by
sampling, which tightens the lower bound.
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3 Graph-based Dependency Parsing

A dependency graph of a sentence can be regarded as a directed tree spanning all the words of the
sentence, including a special “word”–the ROOT–to originate out. Assuming a sentence of length l, a
dependency tree can be denoted as T = (< h0,m0 >,< h1,m1 >, . . . , < hl−1,ml−1 >), where ht is
the index in the sequence of the head word of the dependency connecting the tth word mt as a modifier.

Our graph-based parsers are constructed by following the standard structured prediction paradigm
[McDonald et al., 2005; Taskar et al., 2005]. In inference, based on the parameterized scoring function
SΛ with parameter Λ, the parsing problem is formulated as finding the most probable directed spanning
tree for a given sentence x:

T ∗ = argmax
T̃ ∈T
SΛ(x, T̃ ),

where T ∗ is the highest scoring parse tree and T is the set of all valid trees for the sentence x.
It is common to factorize the score of the entire graph into the summation of its substructures: the

individual arc scores [McDonald et al., 2005]:

SΛ(x, T̃ ) =
∑

(h,m)∈T̃

sΛ(h,m) =
l−1∑
t=0

sΛ(ht,mt),

where T̃ represents the candidate parse tree, and sΛ is a function scoring individual arcs. sΛ(h,m)
describes the likelihood of an arc from the head h to its modifier m in the tree. Throughout this paper,
the scoring is based on individual arcs, as we focus on first order parsing.

3.1 Scoring Function Using Neural Architecture
We used the same neural architecture as that in Kiperwasser and Goldberg [2016]’s study. We first use
a bi-LSTM model to take as input ut = [pt; et] at position t to incorporate contextual information, by
feeding the word embedding et concatenated with the POS (part of speech) tag embeddings pt of each
word. The bi-LSTM then projects ut as ot.

Subsequently a nonlinear transformation is applied on these projections. Suppose the hidden states
generated by the bi-LSTM are [o0,o1,o2, . . . ,ot, . . . ,ol−1], for a sentence of length l, we compute the
arc scores by introducing parametersWh,Wm, w and b, and transform them as follows:

rh−arct =Whot; rm−arct =Wmot,

sΛ(h,m) = wᵀ(tanh(rh−arch + rm−arcm + b)).

In this formulation, we first use two parameters to extract two different representations that carry two
different types of information: a head seeking for its modifier (h-arc); as well as a modifier seeking for
its head (m-arc). Then a nonlinear function maps them to an arc score.

For a single sentence, we can form a scoring matrix as shown in Figure 3, by filling each entry in the
matrix using the score we obtained. Therefore, the scoring matrix is used to represent the head-modifier
arc score for all the possible arcs connecting two tokens in a sentence [Zheng, 2017].

Using the scoring arc matrix, we build graph-based parsers. Since exploring neural architectures for
scoring is not our focus, we did not try other complicates, however performance shall be further improved
by using advanced neural architectures [Dozat and Manning, 2017; Dozat et al., 2017].

4 Preliminaries

To explain the LAP and GAP models, we briefly review Variational Autoencoders (VAE) and tree CRFs.

Variational Autoencoder (VAE) The typical VAE is a directed graphical model with Gaussian latent
variables, denoted by z. A generative process first generates latent variable z from the prior distribution
π(z) and the data x is recovered from the distribution Pθ(x|z), parameterized by θ. There is also an
inference modelQ(z|x), which is an auxiliary posterior distribution, used for inferring the most probable
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Figure 2: figure
Illustration of two different parsers. (a) LAP uses continuous
latent variable to form the dependency tree (b) GAP treats the

dependency tree as the latent variable.
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Figure 3: In this illustration of
the arc scoring matrix, each en-
try represents the (h(head) →
m(modifier)) score.

latent variable z given the input x. In our scenario, x is an input sequence and z is a sequence of latent
variables corresponding to it.

The VAE framework seeks to maximize the complete log-likelihood logP (x) by marginalizing out
the latent variable z. Since direct parameter estimation of logP (x) is usually intractable, a common
solution is to maximize its Evidence Lower Bound (ELBO).

Tree Conditional Random Field Linear chain CRF models an input sequence x = (x1 . . . xl) of
length l with labels y = (y1 . . . yl) with globally normalized probability

P (y|x) = expS(x,y)∑
ỹ∈Y expS(x, ỹ)

,

where Y is the set of all the possible label sequences, and S(x,y) the scoring function, usually decom-
posed as emission (

∑l
i=1 s(xi, yi)) and transition (

∑l
i=1 s(yi, yi+1)) for first order models.

Tree CRF models generalize linear chain CRF to trees. For dependency trees, if POS tags are given,
the tree CRF model tries to resolve which node pairs should be connected with directed edges, such that
the set of edges form a tree. The potentials in the dependency tree take an exponential form, thus the
conditional probability of a parse tree T , given the sequence, can be denoted as:

P (T |x) = expS(x, T )
Z(x)

, (1)

where Z(x) =
∑
T̃ ∈T(x) expS(x, T ) is the partition function that sums over all possible valid depen-

dency trees in the set T(x) of the given sentence x.

5 Locally Autoencoding Parser (LAP)

LAP is a fast, semi-supervised parser able to make use of unlabeled data in addition to labeled data. The
illustration of this model is displayed in Figure 2a. LAP learns, using both labeled and unlabeled data, a
continuous latent variables representation, designed to support the parsing task by creating contextualized
token-representations that capture properties of the full sentence. Typically, each token in the sentence is
represented by its latent variable zt, which is a high-dimensional Gaussian variable. This configuration
ensures the continuous latent variable retains the contextual information from lower-level neural models
to assist finding its head or its modifier; as well as forcing the representation of similar tokens closer.

We adjust the original VAE setup in our semi-supervised task by considering examples with labels,
similar to recent conditional variational formulations [Sohn et al., 2015; Miao and Blunsom, 2016; Zhou
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and Neubig, 2017]. We propose a full probabilistic model for a given sentence x, with the unified
objective to maximize for both supervised and unsupervised parsing as follows:

J = logPθ(x)P
ε
ω(T |x), ε =

{
1, if T exists,
0, otherwise.

This objective can be interpreted as follows: if the training example has a golden tree T with it, then
the objective is the log joint probability Pθ,ω(T ,x); if the golden tree is missing, then the objective is
the log marginal probability Pθ(x). The probability of a certain tree is modeled by a tree-CRF in Eq. 1
with parameters ω as Pω(T |x). Given the assumed generative process Pθ(x|z), directly optimizing this
objective is intractable, therefore we instead optimize its Evidence Lower BOund (ELBO) :

Jlap = E
z∼Qφ(z|x)

[logPθ(x|z)]−KL(Qφ(z|x)||Pθ(z))

+ ε E
z∼Qφ(z|x)

[logPω(T |z)] .

We show Jlap is the ELBO of J in the appendix A.1. In practice, similar as VAE-style mod-
els, E

z∼Qφ(z|x)
[logPθ(x|z)] is approximated by 1

N

∑N
j=1 logPθ(x|zj) and E

z∼Qφ(z|x)
[logPω(T |z)] by

1
N

∑N
j=1 logPω(T |zj), where zj is the j-th sample ofN samples sampled fromQφ(z|x). At prediction

stage, we simply use µz rather than sampling z. During the inference stage, the tree-Viterbi algorithm
ensures the output is a projective dependency tree.

6 Globally Autoencoding Parser (GAP)

LAP autoencodes the input locally at the sequence level, focusing on the textual representation in iso-
lation by connecting them to the parsing algorithm. A better approach is to treat the entire dependency
tree as a structured latent variable to reconstruct the input.

We design a different model, GAP, by building a model containing both a discriminative component
and a generative component to jointly learn the downstream representations and the dependency structure
construction. The discriminative component builds a neural CRF model for dependency tree construc-
tion, and the generative model reconstructs the sentence from the factor graph as a Bayesian network, by
assuming a generative process in which each head generates its modifier. Concretely, the latent variable
in this model is the dependency tree structure.

6.1 Discriminative Component: the Encoder
We model the discriminative component in our model as PΦ(T |x) parameterized by Φ, taking the same
form as in Eq. 1. Typically in our model, Φ are the parameters of the underlying neural networks, whose
architecture is described in Sec. 3.1.

6.2 Generative Component: the Decoder
We use a set of conditional categorical distributions to construct our Bayesian network decoder. More
specifically, using the head h and modifier m notation, each head reconstructs its modifier with the prob-
ability P (mt|ht) for the tth word in the sentence (0th word is always the special “ROOT” word), which
is parameterized by the set of parameters Θ. Given Θ as a matrix of |V| by |V|, where |V| is the vocabu-
lary size, θmh is the item on row m column h denoting the probability that the head word h generates m.
In addition, we have a simplex constraint

∑
m∈V θmh = 1. The probability of reconstructing the input x

as modifiersm in the generative process is

PΘ(m|T ) =
l−1∏
t=0

P (mt|ht) =
l−1∏
t=0

θmtht ,

where l is the sentence length and P (mt|ht) represents the probability a head generating its modifier.
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6.3 A Unified Supervised and Unsupervised Learning Framework
With the design of the discriminative component and the generative component of the proposed model,
we have a unified learning framework for sentences with or without golden parse tree.

The complete data likelihood of a given sentence, if the golden tree is given, is

PΘ,Φ(m, T |x) =PΘ(m|T )PΦ(T |x)

=

[
l∏

t=1

P (mt|ht)

]
expSΦ(x, T )

Z(x)

=

exp
∑

(h,m)∈T
s
′
Φ,Θ(h,m)

Z(x)
,

where s
′
Φ,Θ(h,m) = sΦ(h,m) + log θmh, withm,x and T all observable.

For a unlabeled sentence, the complete data likelihood can be obtained by marginalizing over all the
possible parse trees in the set T(x):

PΘ,Φ(m|x) =
∑
T ∈T(x)

PΘ,Φ(m, T |x)

=
U(x)

Z(x)
,

where U(x) =
∑
T ∈T(x) exp

∑
(h,m)∈T

s
′
Φ,Θ(h,m).

We adapted a variant of Eisner [1996]’s algorithm to marginalize over all possible trees to compute
both Z and U , as U has the same structure as Z, assuming a projective tree. This algorithm also enforces
the output is a projective dependency tree.

We use log-likelihood as our objective function. The objective for a sentence with golden tree is:

Jl = logPΘ,Φ(m, T |x)

=
∑

(h,m)∈T

s
′
Φ,Θ(h,m)− logZ(x)

If the input sentence does not have an annotated golden tree, then the objective is:

Ju = logPΘ,Φ(m|x)
= logU(x)− logZ(x). (2)

Thus, during training, the objective function with shared parameters is chosen based on whether the
sentence in the corpus has golden parse tree or not.

6.4 Learning
Directly optimizing the loss in Eq.2 is difficult when using the unlabeled data, and may lead to undesir-
able shallow local optima. Instead, we derive the evidence lower bound (ELBO) of logPΘ,Φ(m|x) as
follows, by denoting Q(T ) = PΘ,Φ(T |m,x) as the posterior:

logPΘ,Φ(m|x) = log
∑
T
Q(T )

PΘ,Φ(m, T |x)
Q(T )

= logET ∼Q(T )
PΘ,Φ(m, T |x)

Q(T )

≥ ET ∼Q(T ) log
PΘ,Φ(m, T |x)

Q(T )
= ET ∼Q(T ) [logPΘ(m|T )]
−KL [Q(T )||PΦ(T |x)] .
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Figure 4: We illustrate the tractable inference procedure by marginalization in a arc-decomposed manner.

Algorithm 1 Learning Algorithm for GAP

1: Initialize the parameter Θ in the decoder with the labeled data set {x, T }l.
2: Initialize Λ in the encoder randomly.
3: for t in epochs do
4: for sentence xli with golden parse tree T li in the labeled data set {x, T }l do
5: Stochastically update the parameter Λ in the encoder using Adam while fixing the decoder.
6: end for
7: Initialize a Counting Buffer B
8: for unlabeled sentence xui in the unlabeled data set {x}u do
9: Compute the posterior Q(T ) in an arc factored manner for xui tractably.

10: Compute the expectation of all possible (h(head) → m(modifier)) occurrence in the sen-
tence x based on Q(T ).

11: Update buffer B using the expectation to the power for 1
1−σ of all possible (h→ m).

12: end for
13: Obtain Θ globally and analytically based on the buffer B and renew the decoder.
14: end for

Instead of maximizing the log-likelihood directly, we alternatively maximize the ELBO, so our new
objective function for unlabeled data becomes

max
Θ,Φ

ET ∼Q(T ) [logPΘ(m|T )]−KL [Q(T )||PΦ(T |x)] .

Note instead of using sampling to approximate the ELBO above as in Corro and Titov
[2018]’s work: ET ∼Q(T ) [logPΘ(m|T )] − KL [Q(T )||PΦ(T |x)] ≈ 1

N

∑N
j=1 [logPΘ(m|Tj)] −

KL [Q(Tj)||PΦ(Tj |x)], we identify a tractable algorithm to calculate it directly, tightening the bound.
In addition, to account for the unambiguity in the posterior, we incorporate entropy regularization [Tu

and Honavar, 2012] when applying our algorithm, by adding an entropy term−
∑
T Q(T ) logQ(T ) with

a non-negative factor σ when the input sentence does not have a golden tree. Adding this regularization
term is equivalent as raising the expectation of Q(T ) to the power of 1

1−σ . We annealed σ from the
beginning of training to the end, as in the beginning, the generative model is well initialized by sentences
with golden trees that resolve disambiguity. The details of training are shown in Alg. 1.

6.5 Convexity of ELBO w.r.t. Θ
In practice, we found the model benefits more by fixing the parameter Φ when the data is unlabeled and
optimizing the ELBO w.r.t. the parameter Θ. We attribute this to the strict convexity of the ELBO w.r.t.
Θ, by sketching the proof in Appendix A.2.

6.6 Tractable Inference
The common approach to approximate the expectation of the latent variables from the posterior distri-
bution Q(T ) is via sampling in VAE-type models [Kingma and Welling, 2014]. In a significant contrast
to that, we argue in this GAP model the expectation of the latent variable (which is the dependency tree
structure) is analytically tractable by designing a variant of the inside-outside algorithm [Eisner, 1996;
Paskin, 2001] in an arc decomposed manner. This can be done by regarding each directed arc as an
indicator variable from a Bernoulli distribution, implying whether the arc exists or not. We argue that
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assuming the dependency tree is projective, specialized belief propagation algorithm exists to compute
not only the marginalization over all other arcs but also the target arc. This algorithm also computes the
expectation of each arc analytically, making inference tractable. This idea is illustrated in Figure 4. We
show the details of this algorithm in the appendix A.4. We also show how to calculate the expectation
w.r.t the posterior distribution Q(T ) in appendix A.3.

7 Experiments

7.1 Experimental Settings

Data sets First we compared our models’ performance with strong baselines on the WSJ data set,
which is the Stanford Dependency conversion [De Marneffe and Manning, 2008] of the Penn Treebank
[Marcus et al., 1993] using the standard section split: 2-21 for training, 22 for development and 23 for
testing. Second we evaluated our models on multiple languages, using data sets from UD (Universal
Dependency) 2.3 [Mcdonald et al., 2013]. Since semi-supervised learning is particularly useful for low-
resource languages, we believe those languages in UD can benefit from our approach. The statistics of
the data used in our experiments are described in Table 1.

To simulate the low-resource language environment, we used 10% of the whole training set as the
annotated, and the rest 90% as the unlabeled.

Language WSJ Dutch Spanish English French Croatian German Italian Russian Japanese
Training 39832 12269 14187 2914 14450 6983 13814 13121 3850 7133
Development 1700 718 1400 707 1476 849 799 564 579 511
Testing 2416 596 426 769 416 1057 977 482 601 551

Table 1: Statistics of multiple languages we used in our experiments are shown here. The table shows
number of sentences in the training, development and test data divisions.

Model Dutch Spanish English French Croation German Italian Russian Japanese
NMP (L) 76.11 82.00 75.51 83.07 77.44 74.07 82.85 75.18 93.46
NTP (L) 76.20 82.09 75.57 83.12 77.51 74.13 82.99 75.23 93.54
LAP (L) 76.15 81.93 75.36 83.09 77.45 74.14 83.07 74.84 93.38
GAP (L) 76.23 81.97 75.75 83.11 77.49 74.16 83.14 75.17 93.52
CRFAE (L+U) 71.32 74.67 68.52 77.35 69.89 68.44 76.37 68.64 87.26
ST (L+U) 75.37 80.86 72.76 81.38 76.10 73.45 82.74 72.57 91.43
LAP (L+U) 76.29 82.48 75.48 83.23 77.78 74.48 83.34 75.22 93.65
GAP (L+U) 76.54 82.56 76.21 83.26 77.83 74.63 83.54 75.69 93.92

Table 2: In this table we compare different models on multiple languages from UD. Models were trained
in a fully supervised fashion with labeled data only (noted as “L”) or semi-supervised (notes as “L+U”).
“ST” stands for self-training.

Training In the training phase, we use Adam [Kingma and Ba, 2014] to update all the parameters in
both LAP and GAP, except the parameters in the decoder in GAP, which are updated by using their global
optima in each epoch. In GAP, We annealed σ from 1 to 0.3. We did not take efforts to tune models’
hyper-parameters and they remained the same across all the experiments. To preventing over-fitting, we
applied the “early stop” strategy by using the development set.

7.2 Semi-Supervised Dependency Parsing on WSJ Data Set

We first evaluate our models on the WSJ data set and compared the model performance with other
semi-supervised parsing models, including CRFAE [Cai et al., 2017], which is originally designed for
dependency grammar induction but can be modified for semi-supervised parsing, and “differentiable
Perturb-and-Parse” parser (DPPP) [Corro and Titov, 2018]. To contextualize the results, we also experi-
ment with the supervised neural margin-based parser (NMP) [Kiperwasser and Goldberg, 2016], neural
tree-CRF parser (NTP) and the supervised version of LAP and GAP, with only the labeled data. To en-
sure a fair comparison, our experimental set up on the WSJ is identical as that in DPPP, using the same
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100 dimension skip-gram word embeddings employed in an earlier transition-based system [Dyer et al.,
2015]. We show our experimental results in Table 3.

Model UAS
DPPP[Corro and Titov, 2018](L) 88.79
DPPP[Corro and Titov, 2018](L+U) 89.50
CRFAE[Cai et al., 2017](L+U) 82.34
NMP[Kiperwasser and Goldberg, 2016](L) 89.64
NTP (L) 89.63
Self-training (L+U) 87.81
LAP (L) 89.37
LAP (L+U) 89.49
GAP (L) 89.65
GAP (L+U) 89.96

Table 3: Comparing model performance on WSJ data set with 10% labeled data. “L” means only 10%
labeled data is used, while “L+U” means both 10% labeled and 90% unlabeled data are used.

As shown in this table, both of our LAP and GAP model are able to utilize the unlabeled data to
increase the overall performance comparing with only using labeled data. Our LAP model performs
slightly worse than the NMP model, which we attribute to the increased model complexity by incorpo-
rating extra encoder and decoders to deal with the latent variable. However, our LAP model achieved
comparable results on semi-supervised parsing as the DPPP model, while our LAP model is simple and
straightforward without additional inference procedure. Instead, the DPPP model has to sample from
the posterior of the structure by using a “GUMBEL-MAX trick” to approximate the categorical distribu-
tion at each step, which is intensively computationally expensive. Further, our GAP model achieved the
best results among all these methods, by successfully leveraging the the unlabeled data in an appropriate
manner. We owe this success to such a fact: GAP is able to calculate the exact expectation of the arc-
decomposed latent variable, the dependency tree structure, in the ELBO for the complete data likelihood
when the data is unlabeled, rather than using sampling to approximate the true expectation. Self-training
using NMP with both labeled and unlabeled data is also included as a base-line, where the performance
is deteriorated without appropriately using the unlabeled data.

7.3 Semi-supervised Dependency Parsing on the UD Data Set

We also evaluated our models on multiple languages from the UD data and compared the performance
with the semi-supervised version of CRFAE and the fully supervised NMP and NTP. To fully simulate
the low-resource scenario, we did not use any external word embeddings but initializing them randomly.

We summarize the results in Table 2. First, when using labeled data only, LAP and GAP have similar
performance as NMP and NTP. Second, we note that our LAP and GAP models do benefit from the
unlabeled data, compared to using labeled data only. Both our LAP and GAP model are able to exploit
the hidden information in the unlabeled data to improve the performance. Comparing between LAP and
GAP, we notice GAP in general has better performance than LAP, and can better leverage the information
in the unlabeled data to boost the performance. These results validate that GAP is especially useful for
low-resource languages with few annotations. We also experimented using self-training on the labeled
and unlabeled data with the NMP model. As results show, self-training deteriorate the performance
especially when the size of the training data is small.

8 Comparison of Complexity

We briefly compare the complexity of LAP, GAP and their competitors in Table 4. As can be seen,
though all the algorithms are of O(l3) complexity, the constant differs significantly. Our LAP model is
6 times faster than the DPPP algorithm while our GAP model is 2 times faster. Considering the model
performance, our models are favored.

∗Although it is the same as NTP and LAP, in fact the max operation is faster than the sum operation.
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Model Complexity (Train) Complexity (Eval)
DPPP 24l3 4l3

CRFAE 12l3 4l3

NMP∗ 4l3 4l3

NTP 4l3 4l3

LAP 4l3 4l3

GAP 12l3 4l3

Table 4: We compare the complexity of different models, with l indicating the sentence length.

9 Conclusion

In this paper, we present two semi-supervised parsers, namely locally autoencoding parser (LAP) and
globally autoencoding parser (GAP). Both are end-to-end learning systems enhanced with neural archi-
tectures, capable of utilizing the latent information within the unlabeled data together with labeled data
to improve the parsing performance, without using external resources. More importantly, GAP outper-
forms the previous published [Corro and Titov, 2018] semi-supervised parsing system on the WSJ data
set. We attribute this success to two reasons: First, GAP consists both a discriminative component and
a generative component, which are constraining and supplementing each other such that final parsing
choices are made in a checked-and-balanced manner to avoid over-fitting. Second, instead of sampling
from posterior of the latent variable (the dependency tree), GAP analytically computes the expectation
and marginalization, hence the decoder’s global optima can be found, leading to improved performance.
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A Appendix

A.1 ELBO of LAP’s Original Ojective

Given an input sequence x, we prove that Jlap is the ELBO of J :

Lemma A.1. Jlap is the ELBO (evidence lower bound) of the original objective J , with an input se-
quence x.

Denote the encoder Q is a distribution used to approximate the true posterior distribution Pφ(z|x),
parameterized by φ such that Q encoding the input into the latent space z.

Proof.

logPθ(x)P
ε
ω(T |x) = logPθ(x)︸ ︷︷ ︸

U

+ ε logPω(T |x)︸ ︷︷ ︸
L

U = log

∫
z
Qφ(z|x)

Pθ(x)

Qφ(z|x)
dz

≥ E
z∼Qφ(z|x)

[logPθ(x|z)]

− E
z∼Qφ(z|x)

[
log

Qφ(z|x)
Pθ(x)

]
= E
z∼Qφ(z|x)

[logPθ(x|z)]

−KL (Qφ(z|x)||Pθ(z)) ,
(ELBO of traditional VAE)

L =ε logPω(T |x)

=ε log

∫
z
Pω(T |z)Qφ(z|x)dz

=ε log E
z∼Qφ(z|x)

[Pω(T |z)]

≥ε E
z∼Qφ(z|x)

[logPω(T |z)] .

Combining U and L leads to the fact:

U + L ≥ E
z∼Qφ(z|x)

[logPθ(x|z)]−KL(Qφ(z|x)||Pθ(z))

+ε E
z∼Qφ(z|x)

[logPω(T |z)] = Jlap

A.2 Convexity of ELBO w.r.t Θ in GAP

Since we only care about the term containing Θ, the KL divergence term degenerates to a constant. For
sentence i, Q(Ti) has been derived in the previous section as matrix P and 1 is the indication function.
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max
Θ

∑
i

ETi∼Q(Ti) [logPΘ(mi|Ti)]

−KL [Q(Ti)||PΦ(Ti|xi)]

max
Θ

∑
i

∑
Ti∈T(xi)

Q(Ti) logPΘ(mi|Ti) + Const

max
Θ

∑
(h→m)

log θmhE(h→m)∼Q1(h→ m)

max
Θ

∑
(h→m)

Q(1(h→ m)) log θmh, (3)

Q(1(h→ m)) is a Bernoulli distribution,

indicating whether the arc (h→ m) exists.

s.t.
∑
m

θmh = 1 ∀h. (4)

A.3 Marginalization and Expectation of Latent Parse Trees
Light modification is needed in our study to calculate the expectation w.r.t. the posterior distribution
Q(T ) = PΘ,Φ(T |m,x), as we have

PΘ,Φ(T |m,x) =
PΘ,Φ(T ,m|x)
PΘ,Φ(m|x)

=
exp

∑
(h,m)∈T

s
′
Φ,Θ(h,m)

Z(x)
/
∑
T ∈T

exp
∑

(h,m)∈T
s
′
Φ,Θ(h,m)

Z(x)



=

exp
∑

(h,m)∈T
s
′
Φ,Θ(h,m)

Z ′(x)
,

where Z ′(x) =
∑
T ∈T exp

∑
(h,m)∈T

s
′
Φ,Θ(h,m) is the real marginal we need to calculate using the trans-

formed scoring matrix S′ as input in the inside algorithm. Each entry in this transformed scoring matrix
is defined in the text as s

′
Φ,Θ(h,m).

A.4 Algorithm Details for GAP
Assuming the sentence is of length l, we could obtain an arc decomposed scoring matrix S of size l× l,
with the entry S[i, j]i 6=j,j 6=0 stands for the arc score where ith word is the head and jth word the modifier.

We first describe the inside algorithm to compute the marginalization of all possible projective trees
in Algo.2.

We then describe the outside algorithm to compute the outside tables in Algo. 3. In this algorithm,
⊕

stands for the logaddexp operation.
Finally, with the inside table α, outside table β and the marginalization Z of all possible latent trees,

we can compute the expectation of latent tree in an arc-decomposed manner. Algo. 4 describes the
procedure. It results the matrix P containing the expectation of all individual arcs by marginalize over
all other arcs except itself.
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Algorithm 2 Inside Algorithm
Input: S
Output: α, Z

1: α← −∞
2: for s ∈ 0 . . . l − 1 do
3: if s > 0 then
4: α[s, s, L, C]← 0
5: end if
6: α[s, s,R,C]← 0
7: end for
8: for k ∈ 1 . . . l − 1 do
9: for s ∈ 0 . . . l − k do

10: t = s+ k
11: if s > 0 then
12: α[s, t, L, I]← log

∑
u∈[s,t−1]

exp (α[s, u,R,C] +α[u+ 1, t, L, C]) + S[t, s]

13:
=

14: end if
15: α[s, t, R, I]← log

∑
u∈[s,t−1]

exp (α[s, u,R,C] +α[u+ 1, t, L, C]) + S[s, t]

16:
=

17: if s > 0 then
18: α[s, t, L, C]← log

∑
u∈[s,t−1]

exp (α[s, u, L,C] +α[u, t, L, I])

19:
=

20: end if
21: α[s, t, R,C]← log

∑
u∈[s,t−1]

exp (α[s, u+ 1, R, I] +α[u+ 1, t, R,C])

22:
=

23: end for
24: end for
25: Z ← α[0, l − 1, R, C]
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Algorithm 3 Outside Algorithm
Input: S,α
Output: β

1: β ← −∞
2: β[0, l − 1, R, C]← 0
3: for k ∈ l − 1 . . . 1 do
4: for s ∈ 0 . . . l − k do
5: t = s+ k
6: for u ∈ s . . . t− 1 do
7: β[s, u+ 1, R, I]←

⊕
(β[s, u+ 1, R, I],β[s, t, R,C] +α[u+ 1, t, R,C])

8:
=

9: end for
10: for u ∈ s . . . t− 1 do
11: β[u+ 1, t, R,C]←

⊕
(β[u+ 1, t, R,C],β[s, t, R,C] +α[s, u+ 1, R, I])

12:
=

13: end for
14: if s > 0 then
15: for u ∈ s . . . t− 1 do
16: β[s, u, L,C]←

⊕
(β[s, u, L,C],β[s, t, L, C] +α[u, t, L, I])

17:
=

18: end for
19: for u ∈ s . . . t− 1 do
20: β[u, t, L, I]←

⊕
(β[u, t, L, I],β[s, t, L, C] +α[s, u, L,C])

21:
=

22: end for
23: end if
24: for u ∈ s . . . t− 1 do
25: β[s, u,R,C]←

⊕
(β[s, u,R,C],β[s, t, R, I] +α[u+ 1, t, L, C] + S[s, t])

26:
=

27: end for
28: for u ∈ s . . . t− 1 do
29: β[u+ 1, t, L, C]←

⊕
(β[u+ 1, t, L, C],β[s, t, R, I] +α[s, u,R,C] + S[s, t])

30:
=

31: end for
32: if s > 0 then
33: for u ∈ s . . . t− 1 do
34: β[s, u,R,C]←

⊕
(β[s, u,R,C],β[s, t, L, I] +α[u+ 1, t, L, C] + S[t, s])

35:
=

36: end for
37: for u ∈ s . . . t− 1 do
38: β[u+ 1, t, L, C]←

⊕
(β[u+ 1, t, L, C],β[s, t, L, I] +α[s, u,R,C] + S[t, s])

39:
=

40: end for
41: end if
42: end for
43: end for
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Algorithm 4 Arc Decomposed Expectation
Input: α,β, Z
Output: P

1: P ← 0
2: for s ∈ 0 . . . l − 2 do
3: for t ∈ s+ 1 . . . l − 1 do
4: if s 6= t then
5: P [s, t]← exp(α[s, t, R, I] + β[s, t, R, I]− Z)

6:
α

β

7: if s > 0 then
8: P [t, s]← exp(α[s, t, L, I] + β[s, t, L, I]− Z)

9:
α

β

10: end if
11: end if
12: end for
13: end for


