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Abstract

Accumulating knowledge to tackle new tasks without necessarily forgetting the old ones is a hall-
mark of human-like intelligence. But the current dominant paradigm of machine learning is still
to train a model that works well on static datasets. When learning tasks in a stream where data
distribution may fluctuate, fitting on new tasks often leads to forgetting on the previous ones. We
propose a simple yet effective framework that continually learns natural language understanding
tasks with one model. Our framework distills knowledge and replays experience from previ-
ous tasks when fitting on a new task, thus named DnR (distill and replay). The framework is
based on language models and can be smoothly built with different language model architec-
tures. Experimental results demonstrate that DnR outperfoms previous state-of-the-art models in
continually learning tasks of the same type but from different domains, as well as tasks of radi-
cally different types. With the distillation method, we further show that it’s possible for DnR to
incrementally compress the model size while still outperforming most of the baselines. We hope
that DnR could promote the empirical application of continual language learning, and contribute
to building human-level language intelligence minimally bothered by catastrophic forgetting.

1 Introduction

Humans and many advanced animals can learn new tasks without necessarily forgetting the old ones
(Glenberg, 1997; Zenke et al., 2017). This ability to continuously learn, accumulate knowledge and reuse
them to tackle new challenges through the lifespan is a critical requirement for human-like intelligence.
However, the currently dominant paradigm for machine learning is still to train a model on a static
dataset, where state-of-the-art methods deliver impressive performance on that particular task. But when
learning tasks in a stream where data distribution may shift, the models generally fail to isolate acquired
knowledge and forget previously learned tasks. Such phenomenon is known as catastrophic forgetting.

There are mainly two stretches of methods in overcoming catastrophic forgetting. One is data-based
method that achieves continual learning through reproducing the data distribution of old tasks (Kamra
et al., 2017; Chaudhry et al., 2018). Either storing real or generating pseudo examples, the model replays
the training data of experienced tasks when learning a new one. The other stretch is model-based that
enables continual learning with modification to the model architecture (Schwarz et al., 2018; Masse et al.,
2018). For example, some methods (Lee et al., 2017; Aljundi et al., 2018) regularize the loss function to
constrain the updates of weights, especially those important for solving tasks. In the continual learning
settings of the above methods, the tasks in a stream are mostly in essence of the same type, just different
in domains. And most of the methods have only been applied to solve computer vision tasks.

The emergence and rapid development of large-scale pre-trained language models make it possible to
solve essentially different types of natural language understanding (NLU) tasks with one base architec-
ture. But these over-parameterized models are also in risk of over-fitting, more prone to forgetting when
sequentially learning diverse data distributions (Parisi et al., 2019). To this end, we propose a framework
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Figure 1: [a] The overview of training DnR on a single task that simultaneously learns to optimize
question answering and language modeling. [b] When continually learning along a task sequence, the
knowledge is explicitly transferred through distillation and generative replay. The distillation method
can also be used for model compression if needed.

that performs generative experience replay and knowledge distillation to allow language models to con-
tinually learn and solve different NLU tasks. It is a data-based method. In experience replay, the model
generates examples that imitate the data distribution of experienced tasks to retrain on. Inspired by Sun
et al. (2020), language models are natural text generators, so no additional generation or memory module
are required. In knowledge distillation, the model aligns the semantic space learned on a new task with
the old ones and the alignment is simultaneous with the model optimization. The generated examples are
discrete while the semantic spaces are continuous. Transferring both the discrete and continuous repre-
sentations could lead to better isolation and re-usage of learned knowledge for continual learning. With
the distillation methods, it is also possible for DnR to compress the base language model size, tackling
catastrophic forgetting with an incrementally lighter model.

We compare DnR against strong baselines in learning a stream of tasks, considering two application
scenarios of continual learning. In the first setting, the tasks in the sequence are of the same type but from
different domains, where we select five text classification datasets. In the second setting, the tasks in the
sequence are of different types, where we adopt five tasks including semantic labeling and task-oriented
dialogue. In both cases, DnR outperforms previous state-of-art methods. DnR is easy to implement and
effective in results, promoting the empirical application of continual language learning. We also hope
that DnR could contribute to building human-level language intelligence that is no longer bothered by
catastrophic forgetting.

2 Related Work

Tackling new tasks without necessarily losing the knowledge learned in previous tasks is one fundamental
requirement for a human-like intelligent system (Parisi et al., 2019). However, the currently dominant
paradigm of machine language learning is still training a model on a static dataset to achieve satisfactory
performance on that particular task (Wang et al., 2018; Ostapenko et al., 2019). Most of these methods,
especially the deep neural network-based ones, do not fare well in the continual learning scenarios. In
continual learning, a model is required to fit on a stream of tasks where data distribution may not be
uniform. For example, a network fitted on a first task tends to forget how to perform on it after trained on
a sequential new task (Sun et al., 2018; Shin et al., 2017). This problem, namely catastrophic forgetting,
poses a severe challenge in building a general language intelligent system with lifelong learning capacity.

Efforts have been made in recent years to overcome the catastrophic forgetting of deep neural net-
works. There are mainly two stretches of methods, differentiated by the way of isolating and reusing
the accumulated knowledge. One stretch of method works by reproducing the data distribution of wit-
nessed tasks. Some members of this family select and store informative samples in an explicit memory
module. The memorized samples will be re-trained when learning future tasks. For example, MBPA
from de Masson d’Autume et al. (2019) uses such an episodic memory module for sparse experience
replay and local adaptation to allow continual learning. Due to the efficiency and memory limit of stor-
ing raw examples, some methods supplant the explicit memory with a generator. LAMOL (Sun et al.,
2020), for example, is trained to simultaneously solve a task and imitate training examples, thus saving
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the distribution of previous tasks. The other stretch of method regularizes model structures to remem-
ber old tasks while fitting on the new ones. Instead of preserving informative samples, these methods
seek to protect important weights of the network for performing a particular task. For example, Elastic
Weight Consolidation (EWC) by Kirkpatrick et al. (2016) constrains change of informative weights for
previous tasks identified by Fisher’s information. Instead of relying on such parametric regularization,
Serrà et al. (2018) proposed to split a base network into dedicated parameter subspaces for different
tasks to allow continual learning. Worth noting that there are also hybrid approaches that integrate the
above two stretches of methods to overcome catastrophic forgetting. Gradient Episodic Memory (GEM)
(Lopez-Paz and Ranzato, 2017) and its imrproved version AGEM (Chaudhry et al., 2018) sample and
store a subset of real samples from previous tasks and use them to constrain parameter gradients when
optimizing on the following new tasks.

3 Methods

3.1 Data Formatting

To build a single model that continually generalizes across tasks (especially tasks of different types),
we need to unify the formation of their datasets. Inspired by DecaNLP (McCann et al., 2018), multiple
downstream natural language understanding tasks can be formulated as question answering. For exam-
ple, sentiment classification on a sentence can be seen as generating an answer (A) to the question (Q)
“Is this sentence sentimentally positive or negative?” given the sentence as context (C). In this paper,
we will test the continual learning ability on five different tasks in the scheme of DecaNLP, following
the setting of (Sun et al., 2020). Note that decaNLP supports ten different types of NLU tasks so our
model is not constricted to the five selected tasks. As shown in Table 1, the samples of these tasks are
framed into the scheme of SQuAD, a classical QA dataset. Then the C, Q, A of each training example
are concatenated as a sequence, annotated by some tokens. An [ANS] token will be inserted between Q
and A, indicating the starter point of decoding in question answering. What’s more, DnR simultaneously
optimizes question answering and language modeling (which will be detailed in the following sections).
A [GEN] token is inserted at the head of the C-Q-A sequence to further make a copy in a language
modeling format. Every example of a dataset will be fed to DnR in these two formats as depicted in
Fig.1[a].

Task Context (C) Question (Q) Answer (A) Dataset Train Test Metric

Sentiment 
Classification We love the stirring, funny film. Is this sentence positive or 

negative? positive SST 6920 1821 EM

Semantic Role 
Labeling

The race is in mixed eights, and usually 
held in late February. When is something held ? in late 

February QA-SRL 6414 2201 nF1

Goal Oriented 
Dialogue Are there Eritrean restaurants in town? What is the change in dialogue 

state?
food: 

Eritrean WOZ 2536 1646 dsEM

Question Answering … and AFC stands for American 
Football Conference.. What does AFC stand for>

American 
Football 

Conference
SQUAD 87599 10570 nF1

Semantic parsing The table has column names… Tell me 
what the notes are for South Australia

What is the translation from 
English to SQL? 

SELECT notes 
from table 
WHERE..

WIkiSQL 56355 15878 lfEM

Table 1: Example of the NLU tasks we test that are framed in the context-question-answer format of
SQuAD in decaNLP. Here we also describe the train-test split and evaluation metrics of the five tasks.

3.2 Training on a Single Task

DnR is continually trained on a sequence of tasks, T1, T2, ..., Tn. Beginning from the first task T1 in the
sequence, the model learns to solve the task and generate the training examples of the task. As shown
in Fig.1[a] the examples are framed into the SQuAD-like context-question-answer format. Assume that
the n training examples of task T1 are {ST1

1 , ST1
2 , ...ST1

i ..., ST1
n }, where ST1

i = {CT1
i , QT1

i , A
T1
i }. On one

hand, the model is optimized as in question answering, predicting answers after reading the context and
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question of every training example:

pQA(x) = p
(
AT1

i |C
T1
i , QT1

i

)
(1)

On the other hand, the model is also optimized as a language model, estimating the distribution of the
whole training example as a sequence. Assume that {CT1

i , QT1
i , A

T1
i } is concatenated as a sequence of

length ni and sk denotes one item of this sequence. The model is optimized to maximize

pLM (x) =

ni∏
i=1

p (sk|s1, . . . , sk−1) . (2)

for every training example. We use cross entropy as training objective for both question answering and
language modeling, QA for example:

LQA = − 1

N

N∑
i=1

[
yQA
i log ŷQA

i +
(
1− yQA

i

)
log
(
1− ŷQA

i

)]
(3)

where ŷQA
i denotes the decoded answer on sample i for question answering, while ŷLMi denotes the

predicted token. yQA
i and yLMi denote the targets. LQA and LLM are optimized together as LTask =

LQA + λLMLLM , where LLM is a hyper-parameter.

3.3 Distil and Replay
During the process of continual learning, before fitting on the next task, the model first generates pseudo
samples by top-k sampling that represent the data distribution of previous tasks. The number of generated
examples is γ|Ti|, where γ is the hyper-parameter of sampling ratio and |Ti| is the size of task Ti’s
training data. The generated data are replayed into the current dataset and fed to the model, as shown in
Fig.1[b]. Then the losses are calculated as in the previous subsection. The generated examples can be
seen as a discrete representation of the data distribution of the previous task.

Besides augmenting the current dataset with the generated examples, DnR also performs knowledge
distillation with the generated examples. Treating the model trained on a previous task as the teacher and
model learning the current task as the student, we align the hidden states as well as attention matrices by
optimizing

Ldil =

nl∑
l

[(1−
hlTi−1

· hlTi

||hlTi−1
|| × ||hlTi

||
) + alTi−1

log
alTi−1

alTi

], (4)

where hlTi
denotes layer l’s hidden states of the model trained on task Ti, while alTi

denotes the attention
matrices. nl means the number of layers to be distilled. Therefore, optimizing the loss Ldil is to minimize
the cosine distance between the hidden states and the KL divergence between attention matrices of the
distilled layers. The distillation loss is optimized simultaneously with model training to minimize L =
LTask + λdilLdil.

For distillation, we respectively perform three different methods to match the internal representations
of teacher and student as follows. Methods that the target layers for distillation are fixed and optimized
altogether, as well as that the targets are dynamic and optimized progressively, are proposed.

• Naive matching: the selected layers of the student model are simultaneously optimized to match the
corresponding layers of the teacher model, as shown in Fig.2[a].

• Incremental matching: rather than distilling the layers simultaneously, in the second method we
progressively match the hidden layers from the bottom to the top, inspired by (Aguilar et al., 2020).
As shown in Fig.2[b], such distillation is dynamic and the target layer for matching moves from the
lower to the higher until the output layer. One layer is optimized at a time and the loss is calculated
by the transition 1©→ 2©→ 3©.
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Figure 2: The three distillation methods for matching internal representations. finding dedicated param-
eter sub-space in the single base network for each subject while allowing them to mutually overlap.

• Chain matching: we also progressively distill the knowledge from lower to higher layers. But
instead of moving from one layer to another exclusively, we stack the losses of two successive
layers as in the transition 1© + 2©→ 2© + 3©→ ... . This method is illustrated in Fig.2[c].

3.4 Model Compression

Except for transferring knowledge for continual learning, the distillation techniques can further be used
for model compression if needed. We consider two approaches for model compression, according to how
much computational efficiency is emphasized in practical application.

• Inner-phase compression: the compression phase is integrated in the training process. We directly
drop specific layers of the teacher model to make the student model once learning a new task.
Except this, no modification is exerted on the continual learning process of DnR. The distillation
is still based on the generated examples of previous tasks as subsection 3.3. So this inner-phase
method does not harm the computational efficiency of DnR.

• Outer-phase compression: an independent compression phase is performed after learning every task
Ti. In this compression phase, the distillation is not only for transferring knowledge across tasks,
but also for producing a compressed copy that mimics the behavior of the initial model. So we use
the distillation methods proposed in the previous subsection but based on the real examples of the
Ti. The outer-phase method is slower than the inner-phase one, but higher compression quality can
be expected.

4 Experimental Setup

4.1 Tasks and Datasets

Following the setting of Sun et al. (2020), we select five different tasks from decaNLP. We use Stanford
Question Answering Dataset (SQuAD, Rajpurkar et al. (2016)) for question answering task, Stanford
Sentiment Treebank (SST, Radford et al. (2017)) for sentiment analysis, WikiSQL (Zhong et al. (2017))
for Semantic Parsing, English Wizard of Oz (WOZ) for task-oriented dialogue, and QA-SRL (He et al.,
2015) for semantic role labeling. As shown in Table 1, the samples of these tasks are framed into the
scheme of SQuAD by decaNLP.

The setting of continually learning tasks of different types is challenging. To conduct a fair evaluation,
we also compare models on learning tasks of the same type but from different domains in a sequence.
We follow de Masson d’Autume et al. (2019)’s setting to use Zhang et al. (2015)’s collection of five text
classification tasks, as briefed in Table 2.

4.2 Baselines

We include the following baselines in the evaluation. All the baselines are based on GPT2 with 12 hidden
layers (pre-trained GPT-2 from the huggingface transformers is used1).

1https://huggingface.co/gpt2
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Task Metric Total Train Total Test Dataset Classes Dataset Classes Train Test

Text 
Classfication EM 575000 38000

Yelp 5 Yahoo 10

115000 7600Amazon 5 AGNews 4

DBPedia 14

Table 2: The five text classification datasets. We use the balanced version of all datasets created by
Zhang et al. (2015). They randomly sampled 115,000 training examples and 7,600 test examples from
each dataset, according to the size of the smallest training and test splits of the five tasks.

• Data-based methods: LAMOL2, the previous state-of-the-art continual language learning method,
is adopted. It generates pseudo examples of previous tasks before learning a new task. LAMOL
with and without task-specific tokens (LAMOL-t and LAMOL-g) are both considered.

• Model-based methods: EWC3 and MAS are adopted. They both estimate the importance of weights
for solving a task and condition the updating of important weights.

• Hybrid methods: MBPA and GEM4 (and its improved version AGEM) are hybrids of data-based and
model-based methods. They store training examples for experience replay and parameter adaption.
For MBPA, we take its improved version MBPA++ in the evaluation.

Except for the above methods, we also include fine-tuning as a baseline, where the GPT2 model is
fine-tuned on the sequence of tasks one after another.

4.3 Implementations

We will first test DnR without model size compression. We respectively implement DnR with the three
distillation methods proposed in Section 3. For continual learning, a model is required not only to re-
member old tasks but also to solve new tasks. The distillation should not force the student to fully
replicate the behaviors of the teacher. So in the implementations, we do not match the internal repre-
sentations between all layers of the teacher and student model. For the naive matching (DnRnm), we
respectively implement distillation with one, two or three layers, selecting from the last three layers. For
both the incremental matching (DnRim and DnRcm), we respectively implement distillation with the odd
or even number layers.

We will then test DnR in continual learning with model compression. DnR compressed by the inner-
phase and outer-phase approach are included in the testing, each with the proposed matching policies for
distillation. For outer-phase compression, the epoch running is set to be half of DnR’s training epochs.

The compared baselines and our model DnR are trained for 9 epochs and optimized by Adam with
0.01 weight decay. The initial learning rate is 6.25 × 10−5. For GEM, the sampling rate is 5% of the
train data size. For DnR, the λLM = 0.25. All the models are implemented with PyTorch and trained
on NVIDIA GeForce 2080Ti and Tesla V100. DnR and LAMOL are specifically implemented with
half-precision floating number.

5 Results

In this section, we will first give an overview of different models’ continual learning ability and evaluate
if they are robust to the variation of the task order in a sequence. We then compare specifically how well
different models overcome the catastrophic forgetting while examining two hyper-parameters that may
largely influence DnR’s performance in continual learning. In these two subsections, we observe DnR’s
advantage over the baselines. In the last subsection, we discuss if the distillation approach of DnR can
further compress the model size while still outperform other tested models.

2https://github.com/jojotenya/LAMOL
3https://github.com/stokesj/EWC
4https://github.com/facebookresearch/GradientEpisodicMemory
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Figure 3: [a] Average testing performance on all the three tasks after learning the last task in the sequence.
NM, IM or CM in DnR’s subscript denote the distillation approach while the number in the superscript
denotes the target layer for matching. [b] Average testing performance of DnR on all the three tasks
when learning the last task in the sequence.

order
model I II III IV STD AVG order

model I II III IV STD AVG

AGEM 70.6 65.9 67.5 63.6 2.94 66.9 LAMOL_g 76.7 77.2 76.1 76.1 0.53 76.5 

MBPA 74.1 74.9 73.1 74.9 0.85 74.3 DnR 77.4 77.2 77.1 76.9 0.21 77.2 

Table 3: Average performance on the five text classification tasks after fitting on the last task in the
sequence. I, II, III and IV denote four permutations of the task order.

5.1 Continual Learning

Under the setting of continual learning, one model is required to fit on a sequence of tasks. A robust
continual learning model should not deliver starkly different performances when the sequence order
changes. To gain a full understanding of the model performance and whether they are influenced by the
task order, we first pick three from the five decaNLP tasks to depict, following LAMOL’s (Sun et al.,
2020) setting. We train every model respectively on all the six permutations of the three tasks. After the
model fits on the last task in the sequence, we test it on all the three tasks with the metric demonstrated
in Table 1. The three scores are then averaged as a model’s continual learning performance. The results
are reported in Fig.3[a]. (Note model compression is not implemented unless stated in the experimental
results).

We find that fine-tuning, EWC, MAS and GEM are not robust to the variation of task order when
learning different types of tasks in a stream. Among the four methods, EWC’s performance shows the
lowest fluctuation upon the change of task order. But the standard deviation (S.D.) of its performances
is still as high as 8.7. Simple fine-tuning turns out to be most largely influenced by the task order.
With S.D. 12, its average performance on the sequence “SST-WOZ-SRL” is 63.9% lower than on “SRL-
SST-WOZ” where fine-tuning delivers its highest average score. The best performing variation of our
model DnR−2

nm, exceeds other methods with average score higher than 80 on all the six permutations. Its
performance S.D is 0.4, also lower than other baselines, including the previous state-of-art LAMOL. We
need to confirm DnR’s robustness to the task order. So for each epoch of training the last task, we detail
DnR’s average performance on all three tasks in Fig.3[b]. We find that at the beginning epochs, DnR in
different task orders diverge in performance. But with the training preceding, specifically after 5 epochs,
DnR for different task orders gradually converge to a close level around 81.0. This indicates that the task
order only exerts minor effects on DnR’s continual learning performance.

Continually learning tasks of different types is challenging. For a fair comparison we also test the
models on five text classification tasks in a sequence. We follow de Masson d’Autume et al. (2019)’s
setting to evaluate on four permutations of the tasks and report the results in Table 3. GEM performs
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Figure 4: [a] The models’ performances on SST and SRL when learning the latter tasks in sequence SST-
SRL-WOZ. [b] The models’ performances on SRL and SST when learning the latter task in sequence
SRL-SST-WOZ. [c] The models’ performances on SQuAd and WikiSQl when learning the latter tasks
in the sequence SQuAD-WikiSQL-SRL-SST-WOZ. In [a] to [c], horizontal axis represents the training
process counted by epoch.

better in this relatively simple setting. DnR still exceeds the baselines in most cases.

5.2 Overcoming Catastrophic Forgetting

In this subsection, we specifically evaluate the models in overcoming catastrophic forgetting of previous
tasks when learning a new task. After each epoch of learning the task Ti, (i > 1), we test the model on
all the previous tasks T1, ..., Ti−1. Specifically, there are two hyper-parameters that may highly influence
DnR’s performance in overcoming catastrophic forgetting. γ conditions the number of generated pseudo
examples and λdil weights the distillation loss. So we also test DnR−2

NM (the best performing variation of
DnR as revealed in the previous subsection) with different γ and λdil, with the best performing variation
DnR−2

NM as evaluated in the previous section.
We first evaluate DnR with different γ against the baselines. The tested γ values include 0.05, 0.1 and

0.2. In case that the task order may influence some baselines’ performance, we follow subsection 5.1 to
pick three tasks SST, SRL, WOZ, and respectively test in the order of SST-SRL-WOZ and SRL-SST-
WOZ. The results are reported in Fig.4[a] and Fig.4[b]. In Fig.4[a], the left half denotes performance of
testing the models on SST when learning SRL and WOZ. The right half denotes testing the models on
SRL when learning WOZ. We find that, though starting from a uniform level, the tested models quickly
diverge in performances as the continual learning precedes. In the SST-SRL-WOZ sequence, after fitting
on SRL, three baselines performance on SST drop more than 50%. After fitting on WOZ, four baselines
drop more than 75%. The EWC method suffers most from catastrophic forgetting. Its performance
on SST decreases sharply from 90 to 25.4 only after fitting on one new task. DnR outperforms other
baselines with all the three tested γ settings. With γ = 0.2, we observe the best results. Setting of
γ influences DnR’s performance in overcoming forgetting but not that larger γ yields better results.
Actually we do not observe γ = 0.1 and γ = 0.05 lead to consistently different performances. Similar
patterns are observed for DnR in Fig.4[b]. Changing the task order does not influence DnR’s performance
as highly as other methods such as EWC.

We then evaluate DnR with different λdil against the baselines. Here we use all the five tasks in a
sequence, namely SQuAD-WikiSQL-SST-SRL-WOZ. We test the model performance on SQuAD and
WikiSQL after learning the other tasks in the sequence and show the results in Fig.4[c]. Comparing with
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the three-task sequence, the baselines (EWC, MAS and fine-tuning) show visibly larger fluctuations in
performance under the five-task setting. For these three models, once they start to learn WikiSQL, we
observe that their performances on SQuAD drop sharply. Similar patterns are also observed in the three
models’ performance on WikiSQL when they learn the WOZ task. Our model, DnR, outperforms these
baselines with all three λdil settings. With λdil = 1, DnR achieves its best performance.

5.3 Model Compression

With the distillation method, it’s theoretically possible for DnR to incrementally compress the model size
during continual learning without largely forgetting the learned knowledge. In this subsection, we will
discuss the effects of compressing model size on DnR’s continual learning performance. We still pick the
three tasks as in the previous sections and demonstrate the findings on the task sequence SST-WOZ-SRL.
We report the models’ testing performances on previous tasks when learning the last task SRL in Fig.5.
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Figure 5: Effect of model compression on DnR’s continual learning performance. We compare the
models on SST-WOZ-SRL, and depict their performances on the previous tasks when learning the last
task SRL. [a] and [b] respectively report DnR with inner-phase and outer-phase compression against the
baselines. DnR-in2-NM, for example, denotes dropping two layers with inner-phase compression and
naive matching. Horizontal axis represents the training process counted by epoch.

We first find that even with model compressed, DnR still significantly outperforms EWC and MAS
in continual learning performance. EWC and MAS suffer from catastrophic forgetting even without any
model size compression, especially since learning on WOZ task. We discuss in the previous subsections
that WOZ, the task-oriented dialogue task seems to be largely different in data distribution and task
requirements with SRL and SST. It might be tough for some baselines to mend the gap. In contrast,
dropping two layers of DnR doesn’t lead to a stark decrease in its WOZ task performance, especially
with the outer-phase compression method. But this doesn’t mean that DnR’s is not influenced by model
compression. With both inner-phase and outer-phase compression, the more layers are dropped, the
more that DnR is ablated for continual learning. For example, dropping four layers lesions DnR in
remembering SST. Generally, the outer-phase compression method outperforms the inner-phase one.
For instance, outer-phase compression yields a lower decrease in DnR’s performance on remembering
the WOZ task, as revealed by the comparison between Fig.5[a] and Fig.5[b]. It is also interesting to
find that incremental-matching is more compatible with outer-phase compression. Incremental matching
outperforms normal matching in the outer-phase compression method, but not in the inner-phase one.
So if a memory-efficient light-weight model is required in the empirical application of DnR, we tend to
recommend the outer-phase compression with incremental matching.

6 Conclusion and Future Work

In this paper, we propose Distill and Replay (DnR), a simple yet effective framework for continual lan-
guage learning. We perform generative experience replay and knowledge distillation in DnR, transferring
both discrete and continuous representations of different task’s data distribution to overcome the catas-
trophic forgetting. DnR is compared against competitive baselines in continually learning tasks of the
same type but from different domains, and tasks of radically different types. It outperforms the previous
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state-of-the-art method in most cases. We also demonstrate that with the distillation methods it’s possible
to build incrementally lighter models still capable of continual learning. In future work, we will update
the distillation techniques to save the memory cost and optimize the computational efficiency of DnR.
We hope DnR could serve as a building block for human-level language intelligence that is minimally
bothered by catastrophic forgetting.
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