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Abstract

Question generation over knowledge bases (KBQG) aims at generating natural-language ques-
tions about a subgraph, i.e. a set of triples. Two main challenges still face the current crop of
encoder-decoder-based methods, especially on small subgraphs: (1) low diversity and poor flu-
ency due to the limited information contained in the subgraphs, and (2) semantic drift due to the
decoder’s oblivion of the semantics of the answer entity. We propose an innovative knowledge-
enriched, type-constrained and grammar-guided KBQG model, named KTG, to addresses the
above challenges. In our model, the encoder is equipped with auxiliary information from the
KB, and the decoder is constrained with word types during QG. Specifically, entity domain
and description, as well as relation hierarchy information are considered to construct question
contexts, while a conditional copy mechanism is incorporated to modulate question semantics
according to current word types. Besides, a novel reward function featuring grammatical similar-
ity is designed to improve both generative richness and syntactic correctness via reinforcement
learning. Extensive experiments show that our proposed model outperforms existing methods by
a significant margin on two widely-used benchmark datasets SimpleQuestion and PathQuestion.

1 Introduction

Question Generation over Knowledge Bases (KBQG) aims to generate natural-language questions given
a subgraph in the KB, i.e. a set of connected triples of the form <subject, predicate, object>. KBQG has
a wide range of applications and is increasingly attracting attention from both academia and industry. For
example, KBQG can improve factoid-based question answering (QA) systems by either dual training of
QA and QG or by data augmentation for training corpora. As another example, KBQG can play a critical
role in developing a chat-bot to ask KB-based questions under conversational settings.

Table 1 illustrates a real scenario of KBQG, in which three questions are generated from two connected
triples, along with the answer entity Ohio. Among the three questions, Q3 “Where was the high school
of LeBron James, the American basketball player, located in?” is not only correct in grammars and
semantics but also more diverse than Q1 because it contains the description information of LeBron James.
Meanwhile, Q2 suffers a semantic drift problem due to a mismatch between the wrong interrogative
“when” and Ohio whose entity type is location.

Input <LeBron James, educated_at, St. Vincent-St. Mary High School><St. Vincent-St. Mary High School, located_in, >
Output | Diverse Question | Correct Question Question
Ql X v Where was LeBron James’s high school located in?
Q2 v X When was the high school of LeBron James, the American basketball player, located in?
Q3 v v Where was the high school of LeBron James, the American basketball player, located in?

Table 1: An example of KBQG. We aim at generating questions like Q3, which is diverse and correct.
Compared with Q3, Q1 has less diversity and Q2 suffers from the semantic drift problem.
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Recent works on neural KBQG follow an encoder-decoder architecture that takes KB subgraphs as
the input to yield questions (Serban et al., 2016). In the case of entering a single triple, Elsahar et
al (2018) enriched the encoder with extra contexts and equipped the decoder with attention and copy two
mechanisms to improve generated questions. For expressing given predicates and answers adequately,
Liu et al (2019) presented a new encoder-decoder framework to incorporate diversified off-the-shelf
contexts and an answer-aware loss function. In the case of entering multiple triples, Chen et al (2020)
applied a bidirectional Graph2Seq model to generate questions from a KB subgraph concerning a target
answer. While these KBQG solutions have gained noticeable success, two critical research challenges
(RCs) are still under-explored to date.

RC-1: Limited Information. Questions are often generated from a small KB subgraph consisting of
one or a few triples, and thus the contained information may not be sufficient enough to create a di-
verse and fluent question well. For instance, as shown in Table 1, QI is a plain question, just a simple
combination of the two connected triples, whereas Q2 and Q3 are much more informative in terms of
description details. For this challenge, Liu et al (2019) expanded given triples through additional con-
textual information including type and range. However, the information inadequacy issue still matters,
continuing the generation of rigid and unfluent questions.

RC-2: Semantic Drift. The semantic drift problem will occur when the semantics of generated ques-
tions becomes incompatible with given triples and/or answers. As shown in Table 1, Q2 starts with the
wrong interrogative “when” as the answer is a location (“Ohio”). By contrast, Q3 starts with the correct
interrogative “where”. One possible reason can be that the KBQG model is trained under teacher forc-
ing without any high-level semantic regularization. In this manner, the resulting model may be loosely
grounded by the given triples and answers.

In this paper, we propose a novel knowledge-enriched, type-constrained, and grammar-guided KBQG
model, denoted as KTG, to address the two challenges and generate correct, diverse, and fluent natural-
language questions. For the first challenge, we augment the encoder input by linking both entities and
relations in the source subgraph to an external KB, Wikidata (Vrandeci¢ and Krotzsch, 2014), and hence
introducing auxiliary knowledge such as entity description and domain. In general, the auxiliary knowl-
edge can provide additional background information to improve the diversity and fluency of generated
questions. For the second challenge, we label each word of a question with one of the following four
types: interrogative, entity word, relation word, ordinary words, by which the decoder output is con-
ditioned. At each decoding step, we estimate a distribution over word types first then compute multiple
type-specific generation probabilities for the entire vocabulary. Meanwhile, we use a conditional copy
mechanism to transfer content from different according to current word types. Furthermore, we conjec-
ture that the semantics of generated questions mainly depends on the interrogative. Therefore, we explore
to leverage the entity types of answers to help determine proper interrogatives. For instance, if the entity
type of a target answer is time, then a reasonable interrogative can be “when” for the generated question.
Besides, previous studies have utilized reinforcement learning to encourage the structural conformity
between generated and ground-truth questions (Du et al., 2017; Kumar et al., 2018). This objective is
achieved by promoting higher degrees of text matching evaluated typically by a rigid reward measure
such as BLEU and ROUGE. This study designs an innovative reward function based on the dependency
parsing tree (DPT), which enables the proposed model to benefit from the semantic structure similarity
between generated and ground-truth questions.

The main contributions of this paper are summarized as follows.

e We augment the source subgraph with auxiliary information to enrich encoder input, which im-
proves the diversity of generated questions.

e We propose to incorporate word types in generated questions, and make the decoder output condi-
tioned on these types, which alleviates the semantic drift issue.

e In a reinforcement learning framework, we design a DPT-based evaluator to encourage structural
conformity whilst not rigidly enforcing subsequence matching.

e We conduct extensive experiments on two benchmark datasets SimpleQuestion (Bordes et al., 2015)



and PathQuestion (Zhou et al., 2018) on both standard evaluation metrics and human evaluation.
Results demonstrate that our model outperforms state-of-the-art methods by a significant margin
and that it can generate question that are more correct, diverse and fluent.

2 Related Work

Our work is inspired by the recent work for KBQG based on encoder-decoder frameworks. Owing to
the development of neural networks, the encoder-decoder model is initially proposed for text generation
(Sutskever et al., 2014) and has significant performances. Based on the big success of the encoder-
decoder model, Serban et al.(2016) first proposed a neural network for mapping KB fact triples into cor-
responding natural language questions and created the 30M Factoid Question-Answer corpus. However,
their approach requires a large number of fact-question pairs as training data, which is not necessarily
available for each domain. To address this challenge, Song et al.(2016) proposed an unsupervised sys-
tem to generate questions from a domain-specific KB without requiring any labeled data. Besides, the
types of generated questions are more diverse without any restrictions. Indurthi et al.(2017) proposed an
RNN based question generation model to generate natural language question-answer pairs from a knowl-
edge graph. To generalize KBQG to unseen predicates and entity types, Elsahar et al.(2018) leveraged
other contexts in the natural language corpus in an encoder-decoder architecture, paired with an original
part-of-speech copy action mechanism to generate questions. These contexts may make it difficult to
generate questions that express the given predicate and associate with a definitive answer. Thus, Liu
et al.(2019) presented a neural encoder-decoder model that integrates diversified off-the-shelf contexts
and an answer-aware loss. Finally, this model obtains significant improvements. Based on the Trans-
former(Vaswani et al., 2017) architecture, Kumar et al.(2019a) proposed an end-to-end neural-network-
based model for generating complex multi-hop and difficulty-controllable questions over knowledge
graphs. Instead of using a single KB triple, Chen et al.(2020) applied a bidirectional Graph2Seq model
to generate questions from a subgraph of KB and target answers. Nevertheless, we observe that there
are still two important research issues that are not processed well or even neglected, as we mentioned
in sec. 1. Therefore, we focus on the two issues: generating diverse and fluent questions and solving
semantic drift problem during the process of question generation.

Our model is also inspired by text generation from reinforcement learning (RL). RL has been suc-
cessfully applied to question generation task. Pan et al.(2019) proposed reinforced dynamic reasoning
network, which is based on the general encoder-decoder framework but incorporates a dynamic reason-
ing component to generate conversational questions via an RL mechanism better. (2019b) proposed two
novel QG-specific reward functions for text conformity and answer conformity of the generated ques-
tion. Besides, our work is also related to copy mechanisms. To handle rare or unknown words and copy
from the input, Gu et al. (2016) firstly incorporated copy mechanism into neural network-based Seq2Seq
learning and propose a new model called CopyNet with encoder-decoder structure. Bao et al.(2018)
proposed KB copy to copy elements in the table (KB). Different from the above copying method, Li
et al.(2019) designed a dual copy mechanism to copy from two sources with two gates to maintain the
informativeness and faithfulness of generated questions.

3 Methodology

In this section, we present the details of our model. The overall architecture of our model is shown
in Figure 1. Our model consists of a knowledge-augmented fact encoder, a typed decoder, as well as
a grammar-guided evaluator in the reinforcement learning framework. The knowledge-augmented fact
encoder takes the given entities, relations, and corresponding auxiliary knowledge, i.e. entity description
and relation domain, as input and learns a knowledge-augmented fact representation. The learned repre-
sentation is passed to a typed decoder for question generation. For each token the decoder outputs, the
evaluator rewards the generated question using the grammatical similarity between it and the ground-
truth question. Based on the reward assigned by the evaluator, our encoder-decoder module updates and
improves its current generation.
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Figure 1: An illustration of our proposed model for question generation over knowledge bases.

3.1 Problem Formulation

In this paper, we leverage auxiliary knowledge about the input triples to generate questions over a back-
ground KB. We assume a collection of triples (i.e. facts) F' as input. F' consist of two parts £ and R,
where £ = {ej,--- ,e,} denotes a set of entities (i.e., subjects or objects) and R = {ry, - ,7p—1}
denotes all the predicates (i.e. relations) connecting these entities. Moreover, e, € E denotes the an-
swer entity. Note that these facts form an answer path as a sequence of entities and relations in the KB

which starts from the subject and ends with the answer: e; RN €9 LN N en. Given the above
definitions, the task of KBQG can be formalized as follows:
Y|
P(Y|F) = P(Y|E,R) = [ [ P(wily<t, E, R, K). (1)
t=1
Here K = (D, O) represents auxiliary knowledge, where D = {xl, e ,x"} denotes a set of entity
description and O = {o',--- ,0™} denotes the domains (i.e. types) for entities. Y = (y1,- - ,ypy|) is

the generated question, and y; denotes all previously generated question words before time-step .

3.2 Knowledge-augmented Fact Encoder

Contrary to conventional encoders, our model takes as input not only triples but also the corresponding
auxiliary knowledge as described above. We design a multi-level encoder to obtain the representation
of knowledge-augmented facts. We describe our multi-level encoder below, which consists of entity
encoder, relation memory, and knowledge-augmented fact encoder.

3.2.1 Entity Encoder

Facts in F' only provide the most pertinent information of entities and relations, which is not sufficient
to generate a diverse question, especially when F' is small. In this paper, we link each entity in E to its
respective Wikidata page, and obtain corresponding auxiliary knowledge, including a brief description,
and a domain definition, to enrich the source input. For example, for the entity “LeBron James” in
Table 1, its description and domain is “American Basketball Player” and “human” respectively.

We leverage label, description and domain information to represent each entity. Since the label infor-
mation of an entity e; is a single token, we obtain the label embedding 1; € R from a KB embedding
matrix Ep € R**d where k represents the size of KB vocabulary.

Both description and domain information are sequences of words, and we employ a two-layer bidi-
rectional LSTM network to encode them respectively. Given an entity e;, its description X® =



{af,---,x},} is a sequence of words z of length m. The BiLSTM encoder calculates the hidden

state at time-step ¢ by h; = [LST M ([z}; ﬁt,l]); E/STM([xi, %t,l])]. We output the hidden state of
the final time-step h,,, as the embedding vector, and obtain the description embedding x; = [ﬁm, h ).
The domain embedding o; is calculated in the same way. The entity embedding e; is the concatenation
of the label, domain and description embeddings e; = [1;; x%; 0%].

3.2.2 Global Relation Encoder

Relations in a knowledge base are typically organised hierarchically, such as
root /people /deceased_person/place_of death. The global relation encoder exploits this hierar-
chical structure through an N-ary Tree-LSTM (Tai et al., 2015) to encode these relation. Each LSTM
unit in the relation encoder is able to incorporate information from multiple child units and NV is the
branching factor of the tree. Each unit (indexed by j) contains input and output gates i; and o;, a
memory cell ¢; and hidden state h;. Instead of a single forget gate, the N-ary Tree-LSTM unit contains
one forget gate f;; for each child k, & = 1,2,--- , N, and the hidden state and memory cell of the
k-th child are hj;, and cj;, respectively. Given the input ; in the N-ary Tree-LSTM, its hidden state is
calculated as follows:

N N
ij= oW 4 3 Uy +60), fi = o(WEr + 3" Uy +69),
=1 =1

N N
0j = O'(W(O)Tj + Z Ul(o)hjl + b)), uj = tcmh(W(“)Tj + Z Ul(u)hjl + ),
I=1 =1
N
Cj :ijQUj+ijl®le, hj :Oj@t(lnh(Cj).
=1
Finally, we use the hidden state of each node h; to represent the corresponding relation embeddings
rj. In this way, the encoding is performed once and the relation embeddings are updated through back-
propagation in the training process.

3.2.3 Knowledge-augmented Fact Encoder

With knowledge-augmented embeddings of all entities and relations, we encode the triples F' using a
two-layer bidirectional LSTM network with the input sequence (e1,r1, €2, - ,I'n_1,€,), where each
e; and r; is described in Section 3.2.1 and 3.2.2 respectively. Note that in this paper we use a linear
layer to transform embeddings to maintain the consistency of embedding size. Ultimately, we regard
the hidden states as semantic representations and obtain entity representation (hy, hs, hs, ..., ha,_1)
and relation representation (hg, hy, hg, ..., ha,). The last hidden state of BILSTM is the knowledge-
augmented fact representation F', which is fed into our decoder for question generation.

3.3 Typed Decoder

In order to generate questions that are consistent with the input subgraph, inspired by previous work (Du
et al., 2017), we employ a typed decoder based on LSTM to calculate type-specific word probability
distributions, which assumes that each word has a latent type of the set {interrogative, entity word,
relation word, ordinary words}. In conjunction, we employ a conditional copy mechanism to allow
copying from either the entity input or the relation input.

At the ¢-th time-step, our decoder reads the generated word embedding y;—; and the hidden state s¢—1
of the previous time step to generate the current hidden state by s; = LSTM (s;—1,y:—1). Note that
since the first token of the generated question is interrogative, which is vital for the semantic-consistency
of the generated question, we use the answer embedding, instead of the special start-of-sequence token
<SOS> embedding, at the first time step of the decoder. The answer embedding is the embedding of
entity e,,, which is obtained in the entity encoder and contains label, description, and domain information.
With an explicit answer embedding, the generated interrogative is more accurate, thus alleviates the
semantic drift problem.



For conditional copy from entity and relation source inputs, we leverage a gated attention mechanism
to jointly attend to the entity representation and the relation representation. For entity representation
(h1,hs, hs, ... ha,_1), the entity context vector cf is calculated by the attention mechanism: af’i =

4 Wah§ . . . . .
%, c§ = Y7 | af h¢, where W, is a trainable weight parameter. Similarly, the relation
J t Pally ’

context vector cj can be obtained from the relation representation. Then a gating mechanism is used to
control the information flow from these two sources:

g =o(Wylegict]), ct=g Oy +(1-g) Ocg, up = tanh(Whlst; cil). 2)

Generally, the predicted probability distribution over the vocabulary V' is calculated as: Py =
softmax(Wyug + by ), where Wy and by are parameters.

Different from the conventional decoder, our typed-decoder calculates type-specific generation distri-
butions. Having generated the interrogative, the word types only include {entity word, relation word,
ordinary words} in the following decoding steps. We first estimate a type distribution over word types
and decide to copy or generate words according to the word type. If the word belongs to entity or
relation, we copy this token from the input entity source or relation source. If the word is ordinary,
we calculate type-specific generation distributions over the whole vocabulary. Finally, the generation
probability is a mixture of type-specific generation/copy distributions where the coefficients are type
probabilities.

We reuse the attention score v ; and v ; to derive the copy probability over entities and relations:

Pgw)= Y_ af;, Paw)= > af; 3)

LW =w Wi =w

The final generation distribution P (y;|y<¢, F, K') from which a word can be sampled, is computed by:

P(yt|y<t7E7 Ru K) - Z P(yt|7yt - gi7y<t7E7 RJ K) : P(Tyt :gi’y<taE7 RJ K) (4)
9i€{ge,9r 90}

Here 7, is the word type at time-step ¢ and g; is a word type among the three word types {ge, gr, go}-
Each word can be any of the three types, but with different probabilities given the current context.

The probability distribution over three word types is calculated by: P(7,,|y<, F,K) =
softmax(Wost + bo), where Wy € R3%?, and d is the dimension of the hidden state. The type-specific
probability distribution is computed as:

P(yt’Tyz = ge>y<t7F7 K) = PEaP(yt’Tyz = g'ray<t7Fa K) = PR7P<Z/t‘Tyt = gO7y<taF7 K) = PV-
%)

3.4 Evaluator

We employ a reinforcement learning framework to fine-tune the parameters of the encoder-decoder mod-
ule by optimizing task-specific reward functions through policy gradient in the evaluator. Previous works
directly use the final evaluation metrics BLEU, GLEU, ROUGE-L (Du et al., 2017; Kumar et al., 2019b)
as rewards. Kumar et al. (2019b) also proposed the question sentence overlap score (QSS), which is the
number of common n-grams between predicted question and the source sentence, as a reward function.
Consequently, these methods tend to reward generated questions with large n-gram overlaps with the
ground-truth question or the source context, thus may result in the generation of highly similar but un-
varied questions. Therefore, we present a new reward function that is specifically designed to improve
the variety of generated questions.

DPTS Reward. Dependency Parse Tree (DPT) provides a grammatical structure for a sentence by an-
notating edges with dependency types. We propose DPTS, Dependency Parse Tree Similarity, between
the generated question and the ground-truth question as our reward function. DPTS encourages the gen-
eration of syntactically and semantically valid questions and further improve the diversity of generated



questions, as it is not defined over n-gram overlapping. To calculate DPTS, we leverage the ACVT (At-
tention Constituency Vector Tree) kernel (Quan et al., 2019) to efficiently calculate similarity based on
the number of common substructures between two trees.

To apply the DPTS reward, we employ the self-critical sequence training (SCST) algorithm (Rennie et
al., 2017). At each training iteration, the model generates two output sequences: the sampled output Y°,
in which each word y; is sampled according to the likelihood P(y;|y<¢, ', R, K) predicted by the gener-
ator, and the baseline output Y, obtained by greedy search. r(Y") denotes the DPTS reward of an output

~

sequence Y, and the loss function is defined as: L,; = (r(Y) — (Y®)) >, log P(y{|y%,, E, R, K).

3.5 Inference and Optimization

Apart from the loss in the evaluator, we adopt the negative log-likelihood loss function, and apply super-
vision on the mixture weights of word types.

Lg =Y —log P(ys = fily<t, B, R, K), Luy=»  —log Py, = 7y,ly<t, B, R, K),  (6)
t t

where 7); is the reference word and 73, is the reference word type at time ¢. The overall loss function is
defined as: L = L. + oLy + 8L, where o and 3 are two factors to balance the three loss terms.

4 Experiment

In this section we present the evaluation of our KBQG model KTG. The main experiments compare our
model to a number of baseline models in two settings: automatic evaluation using standard metrics, as
well as human evaluation over a number of criteria. We also conduct an ablation analysis to examine the
effect of various components on model performance.

4.1 Datasets and Preprocessing

We conduct experiments on two widely-used benchmark datasets: SimpleQuestion (Bordes et al., 2015)
dataset and PathQuestion (Zhou et al., 2018). To obtain auxiliary knowledge, we link each entity and
predicate in an input subgraph to Wikidata (Vrandeci¢ and Krotzsch, 2014), an open knowledge base, and
obtain the corresponding entity description and domain and predicate hierarchy as auxiliary knowledge.
In SimpleQuestion, entities are represented by their Freebase IDs. Thus we first map these Freebase IDs
to Wikidata IDs and then find auxiliary knowledge according to the Wikidata IDs. PathQuestion contains
verbalized entities and predicates, which can be directly used to link auxiliary knowledge. For both
SimpleQuestion and PathQuestion, we add auxiliary knowledge to questions as parenthesis. As shown
in Figure 1, the italic and bold words in each question are our auxiliary knowledge. SimpleQuestion
consists of over 108,000 samples and PathQuestion consists of over 11,700 samples. We randomly
select 70% of these samples for training, 10% for validation, and 20% for testing.

4.2 Experimental Settings

The size of KB embeddings and word embeddings are both set to 300. The hidden vector size in the
BiLSTM is also set to 300. The Adam (Kingma and Ba, 2015) optimizer is used in training, with the
learning rate set to 2e-5. Batch size and dropout rate acre set to 64, 0.5, respectively. We stop the training
iterations until the performance difference between two consecutive iterations is smaller than 1e-6.

4.3 Baseline Models

We compare our method with the following baseline models.

RNN-based: a RNN-based question generation model to generate natural language question-answer
pairs from a knowledge graph (Indurthi et al., 2017).

Zero-Shot: a zero-shot KBQG model for unseen predicates and entity types (Elsahar et al., 2018).

Multi-hop: an end-to-end neural network-based method for automatic generation of complex multi-hop
questions over knowledge graphs (Kumar et al., 2019a).

Ans-aware: a KBQG model via using diversified contexts and answer-aware loss (Liu et al., 2019).



BiGraph2Seq: a novel bidirectional Graph2Seq model to generate natural language questions from a
KB subgraph and target answers. (Chen et al., 2020).

KTG®reward (BLEU/ROUGE/QSS): our model that replaces DPTS with other rewards, including
BLEU, ROUGE and QSS (Kumar et al., 2019b).

4.4 Evaluation Metrics

Following previous KBQG works, we rely on a set of well-established metrics for question generation:
BLEU-4 (B-4) (Papineni et al., 2002), METEOR (ME.) (Denkowski and Lavie, 2014) and ROUGE-L
(R-L) (Chin-Yew and Lin, 2004) for automatic evaluation.

Moreover, we conduct human evaluations on 50 randomly chosen questions from the test set of each
dataset. Two human annotators were asked to judge each question on the following three criteria on a
Likert scale of 1-5, with 1 being the worst and 5 being the best. Naturalness (Nat.) rates the fluency and
comprehensibility of the generated question. Diversity (Div.) indicates whether the generated question
contains diverse information. Correctness (Cor.) measures whether the question has grammar errors.

4.5 Results and Discussion

The results of all evaluations are shown in Table 2. For automatic evaluations, our model considerably
outperforms all the baselines on all evaluation metrics across both datasets. The BLEU-4 score of our
full model KTG (last row) increases by 6.93 percentage points on SimpleQuestion and 5.7 percentage
points on PathQuestion compared with BiGraph2Seq, which is the strongest baseline. Similar values can
be observed for METEOR and ROUGE too. It is worth noting that the results of models KTGGBLEU,
KTG®ROUGE and KTG®QSS are highly similar, and they outperform the baseline models. Yet, our
full model KTG attains superior performance, which demonstrates the effectiveness of the DPTS reward
in question generation. For human evaluation results, our model also consistently achieves the best
performance and generates significantly more natural, diverse, and correct questions. Our model is
observed to have the highest naturalness, diversity, and correctness scores among these baseline models.

Datasets SimpleQuestion PathQuestion

Metrics B4 ME. R-L Nat. Div. Cor. B4 ME. R-L Nat. Div. Cor
RNN-based 19.98 2843 46.02 23 12 20 2578 33.17 5078 25 1.6 22
Zero-shot 2271 3039 51.07 26 1.8 23 2944 38.12 5694 29 19 2.6
Multi-hop 2598 34.14 56.03 28 19 24 3414 41.77 62.12 3.1 22 28
Ans-aware 28.19 3698 59.17 33 23 2.8 3744 4312 6478 34 25 3.1

BiGraph2Seq  31.12 39.23 62.14 35 24 3.1 39.88 46.65 67.15 3.6 27 32

KTG®BLEU  34.89 4255 6554 39 3.0 34 4209 49.77 6998 4.1 33 3.7
KTG@ROUGE 34.68 42.04 6489 38 29 34 41.67 49.12 6924 40 32 3.6
KTG®QSS 35.04 4312 6599 39 3.0 34 4285 5036 7044 4.1 33 3.7
KTG 38.05 46.37 68.13 4.1 3.2 3.8 4558 5231 7321 43 35 4.0

Table 2: Results of automatic and human evaluations on the two benchmark datasets.

4.6 Ablation Test

We conduct an ablation test to examine the effectiveness of our model components, by removing auxiliary
knowledge, typed decoder, and reinforcement learning in our model one at a time. We can make a number
of important observations from the analysis results in Table 3. Both auxiliary knowledge in the encoder
contributes and typed decoder contribute significantly and similarly to the overall model performance,
resulting a marked fall of model performance on all metrics with their removal. However, some subtle
nuances in their contributions can be observed from human evaluation.

The removal of the auxiliary knowledge results in the biggest reduction in both naturalness and diver-
sity. This is consistent with the purpose of the component, as it is designed to equip the model with more
information to generate more varied questions. Similarly, by replacing the typed decoder with a general
decoder, we observe a larger performance drop in correctness as compared to the removal of auxiliary
knowledge. This again validates the effectiveness of the typed decoder, as it is designed to mitigate the
semantic drift problem by generating correct interrogatives.



Finally, reinforcement learning improves naturalness, diversity and correctness. This is due to the fact
that the DPTS-based evaluator rewards high grammatical conformity (thus improves correctness), but
not at the expense of enforcing n-gram similarity (thus improves naturalness and diversity).

Datasets SimpleQuestion PathQuestion

Metrics B-4 ME. R-L Nat. Div. Cor. B-4 ME. R-L Nat Div. Cor
KTG 38.05 4637 68.13 4.1 3.2 38 4558 5231 7321 43 35 4.0
w/o knowledge 28.01 36.97 59.79 34 23 37 3924 4563 6638 35 26 39
w/o type 2927 39.19 6358 3.7 27 34 4078 4799 6874 4.1 3.1 35
w/o RL 2821 38.68 6297 3.6 26 33 4037 4742 6799 37 32 34

Table 3: Ablation test by removing each main component one at a time, where “w/o knowledge” re-
moves auxiliary knowledge from model input, “w/o type” replaces the typed decoder by a general LSTM
decoder, without classifying word types, and “w/o RL” represents our model not optimized with rein-
forcement learning (thus without DPTS-based reward).

4.7 Case Study

Table 4.7 lists questions generated by various models for a same subgraph, providing an intuitive illustra-
tion of how our model improves the performance of question generation. Compared to the two baseline
models Ans-aware and BiGraph2Seq, all our model variants generate questions of much higher qual-
ity. Among our model variants, without auxiliary knowledge, KTG-knowledge only generates a plain
question without the additional information “American actress”. Without the typed decoder, model KTG-
type generates a wrong interrogative (“what” instead of “where”). Lastly, incorporating reinforcement
learning, the full model generates a syntactically and semantically valid question.

Model F' = {(laura_devon, spouse, brian_kelly_hell),
(brian_kelly_hell, institution, university_of_michigan)}
Ans-aware who laura_devon’s spouse is?
BiGraph2Seq | what is institution laura_devon’s spouse?
KTG®QSS where does the American actress laura_devon’s husband work for?
w/o knowledge | where does the husband of laura_devon work for?
w/o type what does the husband of American actress laura_devon work for?
w/o RL where the American actress laura_devon husband work for?
KTG where does the husband of laura_devon, an American actress, work for?
Gold where does the husband of American actress laura_devon work for?

Table 4: Case study.

5 Conclusion

In this paper, we tackle two crucial challenges: insufficient source input and semantic drift problem
for the task of question generation over knowledge bases (KBQG). We enrich encoder input with aux-
iliary knowledge, including entity descriptions and predicate domains to improve question diversity.
We employ a typed decoder with a conditional copy mechanism to further improve the semantic-
consistency of generated questions. We further optimize model performance through reinforcement
learning and design a novel reward function based on grammatical similarity but not n-gram over-
lap. This reward ensures the generation of syntactically and semantically valid questions while al-
lowing more diversity and fluency. Experimental results on two benchmark datasets show that our
model achieves significant improvements over state-of-the-art models on all automatic and human eval-
vation metrics. The source code will be released to encourage reproducibility and further research
https://github.com/bisheng/KTG4KBQG.
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