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Abstract

The ambiguous annotation criteria lead to divergence of Chinese Word Segmentation (CWS)
datasets in various granularities. Multi-criteria Chinese word segmentation aims to capture vari-
ous annotation criteria among datasets and leverage their common underlying knowledge. In this
paper, we propose a domain adaptive segmenter to exploit diverse criteria of various datasets. Our
model is based on Bidirectional Encoder Representations from Transformers (BERT), which is
responsible for introducing open-domain knowledge. Private and shared projection layers are
proposed to capture domain-specific knowledge and common knowledge, respectively. We also
optimize computational efficiency via distillation, quantization, and compiler optimization. Ex-
periments show that our segmenter outperforms the previous state of the art (SOTA) models on
10 CWS datasets with superior efficiency.

1 Introduction

Chinese Word Segmentation (CWS) is typically regarded as a low-level NLP task. Unlike English and
French that uses the space token to separate the words, Chinese is a kind of polysynthetic languages
where compounds are developed from indigenous morphemes (Jernudd and Shapiro, 2011; Gong et
al., 2017). The ambiguous distinction between morphemes and compound words leads to the cognitive
divergence of word concepts. Consequently, the labeled datasets seriously diverge due to the annotation
inconsistency, resulting in multi-grained compounds. As shown in Table 1, given a sentence “刘国梁赢
得世界冠军” (Liu Guoliang wins the world championship), the two commonly used corpora, i.e., PKU’s
People’s Daily (PKU) and Penn Chinese Treebank (CTB), use different segmentation criteria.

In practice, a segmenter usually provides multiple configures with different granularities to better serve
various downstream tasks. Fine-grained criterion is able to reduce the vocabulary, thereby relieves the
sparseness issue. On the other hand, coarse-grained words provide more specific meanings, which may
benefit the domain-specific tasks.

In recent years, several multi-criteria learning methods for CWS have been proposed to explore the
common knowledge of heterogeneous datasets. By utilizing the information across all corpora, multi-
criteria learning methods can boost the out-of-vocabulary (OOV) recalls as well as practical perfor-
mance (Qiu et al., 2013; Chao et al., 2015; Chen et al., 2017). Despite its effectiveness, there still are
three unresolved issues. (1) Even with multiple datasets, the data is still limited to provide adequate
linguistic knowledge. (2) Learning from a dataset is likely to hurt the others as the segmentation follows
inconsistent criteria. (3) The advanced models, e.g., Bi-LSTM-CRF (Ma et al., 2018), are computation-
ally expensive. They are based on the recurrent neural networks (RNNs). Since RNNs are auto-regressive
and the computation cannot be completed in parallel, their applications are usually limited due to the poor
computational efficiency. In fact, the inference speed is heavily required for the CWS system as it serves
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Criteria Liu Guoliang wins the world championship
CTB 刘国梁 赢得 世界冠军

PKU 刘 国梁 赢得 世界 冠军

Table 1: Diverse segmentation criteria.

as a fundamental module of NLP pipelines. For example, search engines generally can only afford to
spend tens of milliseconds or even milliseconds in CWS.

To alleviate the limitations of existing methods, we propose a multi-criteria method for CWS. Recent
studies (Yang et al., 2017; Ma et al., 2018; Wang et al., 2019) pointed out that exploiting external
knowledge can improve the CWS accuracy. Based on this observation, we adopt BERT (Vaswani et al.,
2017; Devlin et al., 2018) as the backbone to extract the open-domain knowledge. On the top of BERT,
private projection layers and shared projection layers are used to capture domain-specific knowledge and
common underlying knowledge respectively.

To make it more practicable, three techniques, i.e., knowledge distillation, numeric quantization and
compiler optimization, are adopted to accelerate our segmenter. The BERTology analysis (Clark et al.,
2019; Jawahar et al., 2019; Xu et al., 2020) indicated that the representations from different layers
of BERT capture specific meanings. It is sufficient to use the representations from a middle layer for
the CWS task (see section 4.5.2 for detailed analysis). To make the best use of BERT, the knowledge
distillation method proposed by (Hinton et al., 2015) is utilized.

Simultaneously, we also adopt quantization and compiler optimization techniques to improve the scal-
ability. Experiments show that our method not only significantly outperforms the best known results on
10 CWS datasets with better efficiency.

The contributions could be summarized as follows.

• BERT with a domain projection layer on the top is employed to capture heterogeneous segmentation
criteria and common underlying knowledge. To our knowledge, it is the first time to utilize pre-
trained model in CWS.

• We visualize the BERT layers and attention scores to give an insight into linguistic information
within CWS.

• Model acceleration techniques including distillation, quantization and compiler optimization, are
adopted to improve the segmentation speed.

• Experimental results show that our model outperforms previous results on 10 CWS corpora with
different segmentation criteria.

2 Model Description

Current neural CWS models usually consist of three components: a character embedding layer, a feature
extraction layer and a CRF tag inference layer. To equip our model with the ability of multi-criteria
learning, we insert an extra domain projection layer before the inference layer, as shown in Figure 1. In
this section, we describe the proposed model architecture and the objective function in detail.

2.1 Feature Extraction Layer
We employ BERT (Vaswani et al., 2017; Devlin et al., 2018) to extract feature for the input sequence.
BERT is of critical importance for the word segmentation task. As shown in Figure 1, the characters are
first mapped into embedding vectors and then fed into several transformer blocks. Compared with Bi-
LSTM which processes the sequence step by step, the transformer learns features in parallel for all time-
steps so that the decoding speed can be accelerated. However, the original BERT with 12 transformer
layers is still too heavy to be applied in the real-world word segmentation application. To speed up both
the fine-tuning and inference procedures, we make further optimization as discussed in Section 3.
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Figure 1: The architecture of the proposed model, stacked with a feature extraction layer, a domain
projection layer and a CRF tag inference layer.

Given a sentence X = {x1, x2, ..., xn}, we first map each character xi into embedding vector ei. The
embedding vectors are then fed into BERT to get the feature representations:

hi = BERT(e1, e2, ..., en; θ) , (1)

where θ denotes all the parameters in BERT model.

2.2 Domain Projection Layer
As shown in Table 1, the same sentence can be segmented into different words according to different
dataset criteria. If we simply combine the datasets to train a single model, the model will be confused
by diverse criteria and thus hurt the performance. Traditional methods train an individual model for each
dataset, which results in huge deployment costs in practice.

Inspired by previous works (Chen et al., 2017; Peng and Dredze, 2017), we propose a domain projec-
tion layer to enable our model to adapt the datasets with various criteria. The domain projection layer
helps to capture heterogeneous segmentation criteria of each dataset. There are many variations of the
projection layer; in this paper, we use a linear transformation layer, which is simple but effective for
this task. As shown in Figure 1, we introduce an extra shared projection layer to learn common knowl-
edge from datasets. The computation graph excludes domain-specific projections and reserves the shared
projection to segment with standard criteria.

Formally, with the domain projection layer, we can obtain the domain-specific representation and
shared representation:

hdomain = WT
domainh + bdomain, (2)

hshared = WT
sharedh + bshared, (3)

where WT
domain ∈ Rdh×dh , WT

shared ∈ Rdh×dh , bdomain ∈ Rdh and bshared ∈ Rdh are trainable
parameters. dh is the dimension of h.

2.3 Inference Layer
We treat the CWS task as a character-based sequence labeling problem. Each character in a sentence
X = {x1, x2, ..., xn} is labelled as one of L = {B,M,E, S}, indicating the begin, middle, end of a
word, and a word with single character. As shown in Figure 1, the output of domain-specific projection
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and shared projection are concatenated, then fed into a first-order linear-chain conditional random fields
(CRF) layer (Lafferty et al., 2001) to inference these tags.

Formally, the probability of a label sequence formalized as:

p(Y |X) =
Ψ(Y |X)∑

Y ′∈Ln Ψ(Y ′ |X)
, (4)

where Ψ(Y |X) is potential function:

Ψ(Y |X) =

n∏
i=2

ψ(X, i, yi−1, yi) , (5)

ψ(X, i, yi−1, yi) = exp(s(X, i)yi + byi−1yi) , (6)

where y ∈ {B,M,E, S} is the tag label, b ∈ R|L|×|L| is trainable parameter and byi−1yi means transi-
tion from tag yi−1 to yi. Score function s(X, i) is output of the projection layer at ith character, which
assigns score for each label on tagging the ith character:

s(X, i) = WT
s [hdomain; hshared] + bs, (7)

where [hdomain; hshared] is the concatenation of domain-specific projection and shared projection, WT
s ∈

R2dh×|L| and bs ∈ R|L| are trainable parameters.
The inference can be achieved by maximizing the posterior probability:

Y ∗ = arg max p(Y |X) . (8)

2.4 Objective Function

The parameters of the network are trained to maximize the conditional log-likelihood of true labels on
the dataset. The objective function Jseg is computed as :

Jseg(Θ) =
∑
j

log p(Y (j)|X(j); Θ) , (9)

where Θ denotes all the parameters in the model, (X(j), Y (j)) denotes the jth sample in the datasets.
The total loss for multi-criteria learning is the combination of loss in each datasets.

3 Model Acceleration

Neural CWS models improve the performance by increasing the model complexity, which however
harms the decoding speed and limits their real-world application. To bridge this gap, we apply model
acceleration techniques as follows.

3.1 Distillation

To balance computational cost and segmentation accuracy, we distill knowledge (Ba and Caruana, 2014;
Hinton et al., 2015) from BERT into a smaller transformer network. And the supervised fine-tuning on
the datasets are performed jointly. Recent analysis (Clark et al., 2019; Jawahar et al., 2019) show that
the layers of BERT provide phrase-level information, the middle layers extract syntactic features and the
top layers are capable of handling semantic features. CWS is essentially a syntactic chunking task and
heavily relies on lexical and syntactic features. Therefore, we turn to use bottom-to-middle layers as the
backbone to learn annotations and jointly distill the top layer of BERT. Specifically, the original Chinese
BERT with 12 layers serve as a teacher, and a truncated (3 or 6 layers) BERT learns from the teacher as
a student. The teacher network and student network differ in the feature extraction layer of our proposed
model shown in Figure 1.
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Datasets Training set Development set Testing set Average word length
CNC 5920K 657K 727K 1.52
AS 4903K 546K 122K 1.51

MSR 2132K 235K 106K 1.68
CITYU 1309K 146K 40K 1.62

PKU 994K 115K 104K 1.61
CTB6 641K 59K 81K 1.63
SXU 476K 53K 113K 1.57
UD 100K 11K 12K 1.49
ZX 79K 9K 34K 1.42

WTB 15K 1K 2K 1.53

Table 2: Details of the ten datasets: the number of words in the training set, development set and testing
set, the average word length (char/word) of each dataset.

PKU MSR AS CITYU CTB6 SXU UD CNC WTB ZX
(Yang et al., 2017) 96.3 97.5 95.7 96.9 96.2 - - - - -
(Chen et al., 2017) 94.3 96.0 94.6 95.6 96.2 96.0 - - - -
(Xu and Sun, 2017) 96.1 96.3 - - 95.8 - - - - -

(Ma et al., 2018) 96.1 98.1 96.2 97.2 96.7 - 96.9 - - -
(Gong et al., 2018) 96.2 97.8 95.2 96.2 97.3 97.2 - - - -
(Zhou et al., 2019) 96.2 97.0 96.9 97.1 95.2 - - - - -

(He, 2019) 96.0 97.2 95.4 96.1 96.7 96.4 94.4 97.0 90.4 95.7
Ours (Student-3 layer) 96.7 97.9 96.8 97.6 97.5 97.3 97.4 97.1 93.1 97.0

Ours (Student-3 layer+FP16) 96.6 98.0 96.6 97.5 97.4 97.3 97.3 97.1 92.7 96.8
Ours (Student-6 layer) 97.2 98.3 97.0 97.7 97.7 97.5 97.8 97.2 93.0 97.1

Ours (Student-6 layer+FP16) 97.0 98.2 96.8 97.8 97.7 97.4 97.7 97.1 93.1 96.8
Ours (Teacher-12 layer) 97.3 98.5 97.0 97.8 97.8 97.5 97.8 97.3 93.2 97.1

Ours (Teacher-12 layer+FP16) 97.2 98.3 96.9 97.8 97.7 97.3 97.7 97.2 93.1 96.9

Table 3: Comparison among the state-of-the-art performance on different datasets (F1-score, %).

To distill the original BERT, we add a logits-regression objective by minimizing the square loss be-
tween the normalized logits from the teacher model and the logits from the student model. The distillation
loss is formulated as:

Jdis(Θs,Θt) =
1

2T

M∑
j=0

N∑
i=0

(
h(j,i)
s

||h(j,i)
s ||2

− h(j,i)
t

||h(j,i)
t ||2

)2

, (10)

where Θs, Θt denote parameters in the student network and teacher network, M denotes the number of
samples in the datasets, N denotes the sequence length, hs ,ht denote the logits extracted from student
network and teacher network respectively. During the distillation process, the parameters Θt are frozen.

Combining the segmentation loss and the distillation loss, the overall loss is:

J (Θs,Θt) = Jseg(Θs) + αJdis(Θs,Θt), (11)

where α is a hyper-parameter to trade off these two loss function.

3.2 Quantization

Quantization methods also have been investigated for network acceleration. These approaches are mainly
categorized into two groups: scalar and vector quantization (Gong et al., 2014), fixed-point quantization
(Gupta et al., 2015). Traditional neural networks implementation use 32-bit single-precision floating-
point for both weights and activation, resulting in a cost of the substantial increase in computation and
model storage resources. Therefore, we conduct fixed-point quantization to leverage NVIDIA’s Volta
architectural features. Fixed-point quantization was proposed to alleviate these complexities.

Specifically, in our model, half-precision (FP16) is applied on kernels of multi-head attention layers
and feedforward layers, while rest parameters like embedding and normalization parameters use full
precision (FP32). Gradients in fine-tuning procedures also use full precision. The quantization method
not only accelerates the computation but also reduce the model size.
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Precision Recall F1-Score
Teacher-BERT (12 layer) 97.2 97.0 97.1

Student-Transformer (6 layer) 97.1 97.0 97.0
Student-Transformer (3 layer)) 96.8 96.9 96.8
Student-Transformer (1 layer) 95.9 96.1 96.0

Table 4: Average Precision, Recall, F1-score on 10 datasets for the teacher network and the student
network.

AS CITYU CNC CTB6 MSR PKU SXU UD WTB ZX All Datasets
AS 0.0 13.9 14.8 8.4 7.1 6.4 4.5 2.3 0.4 0.9 30.3

CITYU 33.5 0.0 31.4 14.0 20.9 17.5 9.8 4.0 0.8 2.4 50.5
CNC 14.8 6.2 0.0 4.2 7.7 6.0 2.7 1.7 0.2 0.6 25.1
CTB6 47.3 31.2 40.5 0.0 28.0 24.6 15.4 7.1 1.2 3.1 63.9
MSR 18.4 10.5 27.3 8.0 0.0 10.7 5.9 2.3 0.1 1.3 36.0
PKU 39.6 31.7 50.1 25.3 35.2 0.0 15.7 8.6 0.7 3.9 67.3
SXU 49.8 39.7 56.2 29.3 41.8 36.6 0.0 10.9 1.7 4.9 73.2
UD 55.3 43.2 57.5 37.6 45.1 37.2 30.2 0.0 3.8 6.2 70.2

WTB 76.5 71.0 79.2 64.3 72.5 69.8 65.1 41.6 0.0 22.0 85.1
ZX 71.4 49.8 71.8 43.0 53.1 44.2 35.3 20.1 6.9 0.0 81.1

Table 5: Each row indicates the rate of OOV words ( % ) in a dataset appear in other datasets.

3.3 Compiler Optimization

XLA (Accelerated Linear Algebra) is a domain-specific compiler for linear algebra that accelerates Ten-
sorFlow models by optimizing one’s computations. It provides an alternative mode of running Ten-
sorFlow models: it compiles the TensorFlow graph into a sequence of computation kernels generated
specifically for the given model. Because these kernels are unique to the model, they can exploit model-
specific information for optimization. For example, operations like addition, multiplication and reduction
can be fused into a single GPU kernel.

By introducing XLA into our model, graphs are compiled into machine instructions, and low-level ops
are fused to improve the execution speed. For example, batch matmul is always followed by a trans-
pose operation in the transformer computation graph. By fusing these two operations, the intermediate
product does not need to write back to memory, thus reducing the redundant memory access time and
kernel launch overhead.

4 Experiments

4.1 Experimental Settings

All experiments are implemented on the hardware with Intel(R) Xeon(R) CPU E5-2682 v4 @ 2.50GHz
and NVIDIA Tesla V100.

Datasets. We evaluate our model on ten standard Chinese word segmentation datasets:
MSR,PKU,AS,CITYU from SIGHAN 2005 bake-off task (Emerson, 2005). SXU from SIGHAN 2008
bake-off task (MOE, 2008). Chinese Penn Treebank 6.0 (CTB6) from (Xue et al., 2005). Chinese Uni-
versal Treebank (UD) from the Conll2017 shared task (Zeman and Popel, 2017). WTB (Wang and Yang,
2014), ZX (Zhang and Meishan, 2014) and CNC corpus. For each of the SIGHAN 2005 and 2008

PKU MSR AS CITYU CTB6 SXU UD CNC WTB ZX Avg
F1 single-criteria 94.7 95.3 95.2 95.7 95.4 94.4 94.6 96.3 89.9 94.4 94.5

Score multi-criteria 96.7 97.9 96.7 97.6 97.5 97.3 97.4 97.1 93.1 97.0 96.8
OOV single-criteria 74.8 78.0 78.3 83.7 62.8 80.1 73.6 64.2 73.9 74.8 74.2
Recall multi-criteria 81.6 84.0 77.3 90.1 89.4 85.7 91.6 65.0 82.9 89.1 83.6

Table 6: OOV recall(%), F1 Score (%) achieved with multi-criteria learning and single-criteria learning.
The number of transformer layer is set to 3 for both single-criteria and multi-criteria learning.
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dataset, we randomly select 10% training data as the development set. For other datasets, we use official
data split. Table 2 shows the details of the ten datasets. We can notice that the average word length (char
per word) of these datasets range from 1.42 to 1.68, which reflects the diverse segmentation granularities
and data distribution of these datasets.

Preprocessing. AS and CITYU are mapped from traditional Chinese to simplified Chinese before
segmentation. Continuous English characters and digits in the datasets are respectively replaced with a
unique token. Full-width tokens are converted to half-width to handle the mismatch between training
and testing set.

Hyperparameters. The number of domain projection layer is 1, the max sequence length is set to
128. During fine-tuning, we use Adam with the learning rate of 2e-5, L2 weight decay of 0.01, dropout
probability of 0.1. For the trade-off hyperparameter α, we had tried several value and empirically fixed
it to 0.15 in the following experiment. Parameters in the feature extraction layer of teacher network
and student network are initialized with pre-trained BERT1, and all other parameters are initialized with
Xavier uniform initializer.

Evaluation Metrics. The goal of Chinese word segmentation is to precisely cut the input sentence
into separate words. Therefore, to reach a balance of the precision (P =

#wordgold∩sys
#wordsys

) and recall

(R =
#wordgold∩sys

#wordgold
), we use the F1 score (R = 2PR

P+R ).

4.2 Main Results

We distill the teacher network with the truncated BERT that compared with using the original 12 lay-
ers BERT. The average F1-score on 10 datasets using 3 layers drops slightly from 97.1% to 96.8% as
shown in Table 4. We suggest a student network with 3 transformer layers is a good choice to balance
computational cost and segmentation accuracy.

Performance of our model and recent neural CWS models are shown in Table 3. Our model out-
perform prior works on 10 datasets, with 13.5%, 10.5%, 15.8%, 17.9%, 14.8%, 10.7%, 32.2%, 10.0%,
29.1%, 32.5% error reductions on PKU, MSR, AS, CITYU, CTB6, SXU, UD, CNC, WTB, ZX datasets
respectively. By further applying half-precision (FP16), the accuracy reduction is minor and the model
still outperforms previous SOTA results on 10 datasets. The F1 score did not change when applying
compiler optimization since it had no effect on the result of the predictions.

4.3 Effect of Domain Projection Layer

Previous work (Huang and Zhao, 2007; Ma et al., 2018) pointed out that OOV is a major error and
exploring further sources of knowledge is essential to solving this problem. From a certain point of view,
datasets are complementary to each other since OOV in a dataset may appear in other datasets. We make
some analysis and the statistics are shown in Table 5. Take the dataset AS for example, 13.9% of the
OOV words appear in dataset CITYU, and 30.3% of the OOV words appear in all other datasets.

To utilize knowledge from each other to improve the OOV recall, our model performs multi-criteria
learning with the domain projection layer. To evaluate this, we train the proposed model respectively
on each dataset, i.e., single-criteria learning. In single-criteria learning setting, the shared projection
layer is excluded and only the private projection layer is preserved for each dataset. The number of
student transformer layers is set to 3 for both single-criteria and multi-criteria learning. Table 6 shows
that comparing with single-criteria learning, multi-criteria learning significantly improves the F1 score
on all datasets, with 2.3% improvement on average. It also improves the OOV recall on 9/10 datasets,
with 9.4% improvement on average.

4.4 Scalability

Decoding speed is essential in practice since word segmentation is fundamental for many downstream
NLP tasks. Previous neural CWS models (Ma et al., 2018; Chen et al., 2017; Gong et al., 2018; Zhou et
al., 2019) use Bi-LSTM with concatenated embedding size of 100,100,128,100 respectively. However,

1https://github.com/google-research/bert



2069

Figure 2: Decoding speed w.r.t batch size. The sequence length is 64.

they did not report the decoding speed. To make a fair comparison, we set the Bi-LSTM embedding size
and hidden size to 100, one hidden layer with CRF on the top.

Figure 2 shows the decoding speed with regards to batch size. Our model employed original Chinese
BERT with 12 transformer layers is slower than Bi-LSTM. However, the speed can be increased by op-
timizations, including distillation, weights quantization, and compiler optimization. Combining all of
these three techniques, our models outperform Bi-LSTM with 1.6× - 3.3× acceleration with different
batch size. We try to adapt Bi-LSTM with the same computational optimization as in BERT. The result
shows that Bi-LSTM achieved about 30% acceleration by optimization. And our method still outper-
forms the optimized Bi-LSTM, i.e. Bi-LSTM-xla-fp16, with 1.3× - 2.5× acceleration. Furthermore,
our model is more scalable compared with the Bi-LSTM that are limited in their capability to process
tasks involving very long sequences. By observing the sequence length distribution, we can search an
appropriate layer number to balance F1-score and decoding speed.

4.5 Visualization

4.5.1 Self Attention Score Visualization
In the self-attention layers of the transformer, the attention score of each character is calculated with
the rest characters. By visualizing the attention score, we can intuitively see what each character pay
attention to. Specifically, we choose the sentences with a length larger than 50 in all the ten datasets,
feed these sentences into the model and average the attention scores at each index. The attention score
is shown in Figure 3(a)(b)(c). We can notice that characters around the current character gain larger
weights than those far away. The result indicates that word segmentation depends more on phrase-level
information and long term dependencies are relatively unimportant. It intuitively proves that it is not
necessary to keep long term memory of the sequence for CWS.

4.5.2 Layer Attention Score Visualization
BERT has achieved great success in many NLU tasks by pre-training a stack of 12 transformer layers
to learn abundant knowledge. Intuitively, top layers capture high-level semantic features while bottom
layers learn low-level features like grammar. As for chinese word segmentation task, high-level semantic
features may have a small impact so that we make further investigation to find the minimal number of
transformer layers. We freeze weights of each layer in the pre-trained BERT and conduct layer atten-
tion fine-tuning on word segmentation datasets. As shown in Figure 3(d), the attention score gradually
decrease in top layers from 7 to 12, and the third layer gains the highest attention score. The results
show that the model with three layers contains most information for word segmentation. Recent BERTol-
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(a) Current char index 10 (b) Current char index 20

(c) Current char index 30 (d) Layer attention score

Figure 3: Distribution of self-attention score at certain char index (10, 20, 30) and layer attention score.

ogy (Jawahar et al., 2019; Liu et al., 2019; Tenney et al., 2019; Hewitt and Manning, 2019; Goldberg,
2019) analysis aimed to understand the inner working of BERT from the perspective of linguistics. These
works came into a similar conclusion that the basic syntactic information of chunking appears in lower or
middle layers, which is consistent with our analysis. The higher layers of BERT are the most semantics
or tasks-specific. These analyses also reflect that Chinese word segmentation is a task of more syntactic
but less partial semantic knowledge in linguistics.

5 Related Work

Recently, multi-criteria learning of neural CWS has drawn great attention of scholars. (Qiu et al., 2013)
adopted the stack-based model to take advantage of annotated data from multiple sources. (Chao et al.,
2015) utilize multiple corpora using coupled sequence labeling model to learn and infer two heteroge-
neous annotations directly. (Gong et al., 2018) proposed Switch-LSTM to improve the performance
of every single criterion by exploiting the underlying shared sub-criteria across multiple heterogeneous
criteria. (Chen et al., 2017) have proposed a multi-criteria learning framework for CWS. They pro-
posed three shared-private models to integrate multiple segmentation criteria. An adversarial strategy is
used to force the shared layer to learn criteria-invariant features. All these works utilize heterogeneous
annotation data and show that they can indeed help improve each other.

Model compression and acceleration in deep networks are vital in practice, which makes it possible
to deploy deep models on mobile, embedded, and IoT devices. Techniques like parameter pruning, low-
rank factorization, quantization and knowledge distillation had been widely used in visual tasks (Hinton
et al., 2015; Ba and Caruana, 2014; Gupta et al., 2015; Gong et al., 2014). However, model compression
and acceleration are rarely investigated in NLP tasks, especially neural CWS task. To the best of our
knowledge, we are the first to compress the neural CWS model to accelerate the segmentation speed, by
three model acceleration techniques, knowledge distillation, quantization and compiler optimization. We
emphasize the segmentation speed is very important in industrial application, e.g., search engine.
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6 Conclusion

In this paper, we propose an effective Chinese Word Segmentation method that employs BERT and adds
a domain projection layer on the top with multi-criteria learning. They both serve to capture heteroge-
neous segmentation criteria and common underlying knowledge. And we visualize the attention score
to illustrate linguistic within CWS. To be practicability, acceleration techniques are applied to improve
the word segmentation speed. It consists of knowledge distillation, quantization and compiler optimiza-
tion. Experiments show that our proposed model achieves higher performance on the word segmentation
accuracy and faster prediction speed than the state-of-the-art methods.
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