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Abstract

Commonsense generation aims at generating plausible everyday scenario description by means of
reasoning about the concept combination. Digging the relationship of concepts from scratch does
not suffices to build a reasonable scene, thus we argue editing the retrieved prototype from external
knowledge corpus would benefit to discriminate the priority of different concept combination
and complete the scenario with introducing additional concepts. We propose to use two kind of
corpus as out of domain and in domain external knowledge to retrieve the prototypes respectively.
To better model the prototypes, we design two attention mechanisms to enhance the knowledge
injection procedure. We conduct experiment on CommonGen benchmark, experimental results
show that our method significantly improves the performance on all the metrics.

1 Introduction

Recently, commonsense reasoning tasks such as SWAG (Zellers et al., 2018), CommonsenseQA (Talmor
et al., 2018) and CommonGen (Lin et al., 2019b) are presented to investigate the model’s ability to make
acceptable and logical assumptions about ordinary scenes in our daily life. SWAG requires to infer the
probable subsequent event based on the given textual description of an event. CommonsenseQA focuses
on commonsense question answering that collects commonsense questions at scale by describing the
relation between concepts from CONCEPTNET. Different from these discriminative tasks, CommonGen
is a generation task that not only needs to use background commonsense knowledge to conduct relational
reasoning, but also compositional based generation capability.

Considering CommonGen requires model to reason about a potentially infinite number of novel
combinations of concepts, there is a big gap between human performance and automatic generation
models even current most powerful pretrained models (Lewis et al., 2019; Dong et al., 2019; Yan et al.,
2020). This demonstrates that dig the combination relationship between these concepts from scratch
does not suffice for generative commonsense reasoning. Hashimoto et al. (2018) shows that the task
of generating complex outputs through editing existing outputs can be easier than generating complex
outputs from scratch. This inspires us to use the retrieve-and-edit framework to retrieve a prototype
with these concepts to enhance the commonsense generation task. There are two main advantages of the
retrieve-and-edit framework. First, the knowledge of these concepts are implicit and compositional which
makes it hard to find out a plausible scene from the concepts combination, such as “feel” and “pierce”
appear in the generation of BART in Table 1, the retrieved prototype sentence from external knowledge
corpus would provide a relevant scenario. On the basis of the scenario bias, it would be easier for us to
identify the priority of these concepts combination. Second, these concepts in dataset commonly fail to
cover the whole ones in a complete scenario, it is necessary for the commonsense reasoner to associate
additional concepts to complete a natural and coherent scenario with a variety of background knowledge
such as physical rules, temporal event knowledge, social conventions, etc.

In this work, we proposed to retrieve a prototype from a knowledge corpus, and use this prototype to
guide the commonsense generation procedure. We utilize English Wikipedia and daily scenario datasets
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Concepts ear, feel, pain, pierce

BART I can feel the pain in my ears and feel the pierce in my neck from the piercing.

Prototype1 If you pierce your hand, you also feel pain.

BART+Prototype1 A man feels the pain of having his ear pierced .

Prototype2 He expresses severe pain as he tries to pierce his ear lobe .

BART+Prototype2 He expresses severe pain as he tries to pierce his ear lobe .

Table 1: Example of BART, Prototype and BART+Prototype.

as out of domain and in domain external knowledge corpus to retrieve the prototypes, we notice that the
40% prototypes retrieved from in-domain dataset have no more than 3 overlapped words, this urges us to
better discriminate these effective factors and abandon noises in each prototype. Technically, we focus on
the encoder-decoder-attention to kick the goal. Ome salient concepts in prototype dominate the generation
process and ignore the provided concepts, such as “express” and “feel” in Prototype2 in Table 1. Directly
masking these tokens not in provided concepts would hinder us to introduce effective additional concepts,
thus we propose a scaling module on top of encoder to assign the importance factors for each tokens
of inputs. To keep the completeness of the prototype semantic and better introduce effective additional
concepts into generation, we propose a scaling module on top of encoder to better assign importance
factors in encoder-decoder-attention in advance. Second, we inform the decoder of those importance
token’s positions in source.

The main contributions of this work are: 1) We proposed a retrieve-and-edit framework, Enhanced
Knowledge Injection BART, for commonsense generation task. 2) We combine the two mechanisms into
encoder-decoder-attention to better apply plain text into Commonsense generation task. 3) we conduct
experiment on CommonGen benchmark, experimental results show that our method achieves significantly
performance improvement on both in-domain and out-domain plain text datasets as assistance.

2 Model

In this section, we introduce our retrieve-and-edit framework based EKI-BART Gθ with parameter
θ that extracts prototype O = (o1, o2, · · · , ono) from external text knowledge corpus and edits the
prototype following the requirement of C = (c1, · · · , cnc) to improve the commonsense generation of
target T = (t1, · · · , tnt). The overall framework of our proposed model is shown in Figure 1.

2.1 Pretrained Encoder-Decoder
Pretrained encoder-decoder model, BART (Lewis et al., 2019), commonly follow the transformer

architecture. Several encoder-layers stack as encoder and each of them is composed of self-attention
network and feed-forward network. The input sequence would be encoded into a hidden state sequence
H = (h1, · · · , hnh

). Decoder is also stacked by a few decoder-layers, the key difference between encoder-
layer and decoder-layer is that there exists an encoder-decoder-attention in the middle of self-attention
and feed-forward network. For each token representation du in different decoder layers, its computation
in the encoder-decoder-attention works following Equation 1.

sx(du, hv) = (Wx,qdu)
T (Wx,khv)

/√
dk

ax = softmax
(
sx(du, h1), · · · , sx(du, hnh

)
)

vu =Wo

[
W1,vHa1, · · · ,WX,vHaX

]
d̂u = LN

(
du + vu

)
(1)

where x denotes the xth attention head, where {Wx,q,Wx,k,Wx,v} ∈ Rdk×d are trainable parameters for
query, key and value, x denotes the attention head, d is the hidden size, dk is the attention head dimension,
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Figure 1: The framework of our proposed EKI-BART.

and LN is the layernorm function.
Commonly, these exists an normalization operation before we can get the value encoder output state hv,

in other words, the correlation between hv and du mainly depends on the direction of hv and du.

2.2 Model Input
Following the input method of BART, we concatenate the provided concepts C and the retrieved

prototype O as a whole input S to feed into the pretrained model.

S =
[
C,O

]
=
[
c1, · · · , cnc , o1, · · · , onout

]
(2)

where
[
·, ·
]

is the concatenation manipulation of elements.
In our retrieve-and-edit framework, we need to modify the prototype O to meet the requirement of C,

thus we argue that it is necessary to discriminate the each token comes from O or C. We add the group
embedding on the top of original BART embedding function as Equation 3 shows.

E (cj) = EB(cj) + EC , E (ok) = EB(ok) + EO (3)

where EB stands for the original embedding function in BART including token embedding and position
embedding, EC and EO are two group embedding for concepts C and prototype O, and E is the final
embedding function.

2.3 Generation with Retrieve-and-Edit
From Equation 1, we can see that each token in S simply gets involved in encoder-decoder-attention with

the encoder output statesH, and the prototypeO not only introduces scenario bias and effective additional
concepts but also brings noises into generation, this inspires us to inject more heuristic knowledge into
generation such that better discriminate these factors.

2.3.1 Encoder with Scaling Module
We notice that quite a few tokens in prototype O have a conflict with concepts C but are important

in prototype semantic modeling, we argue it is necessary to prevent these tokens receive more attention
weights than concept tokens in C in encoder-decoder-attention. The simplest solution is to utilize a hard
mask, in other words, only keep those concept tokens in prototype and abandon others, but the decoder
would be no longer aware of the complete prototype scenario and effective additional concepts would be
also unavailable. Instead of hard masking, we propose scaling module to assign scaling factor for input
tokens which can be applied in encoder-decoder-attention, then the model is capable of receiving less
noises and learn more from effective tokens.

We investigate the dot product based attention mechanism shown in Equation 1. Function F with a
scaling factor λ on top of the normalized encoder output statesH is defined in Equation 4,

F (λ) = S(du, λhv) = λ
((
Wqdu

)T (
Wkhv

)/√
dk

)
= λS(du, hv) = λF (1) (4)
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From Equation 4, we can see that when
(
Wqdu

)T (
Wkhv

)
is a large positive value or hv takes important

attention weights in du, then F (λ) is a monotonically decreasing function. This inspires us to refine the
representation of hv through λ. Viewing λ as an importance factor, we are able to weaken/strength hv in
encoder-decoder-attention through decreasing/increasing λ.

With the awareness of the phenomenon in Equation 4, we devise a scaling module on the basis of
Equation 1. In practice, we attach a scaling module to the encoder, which can increase the norm if hv
is likely to contribute to the generation and decrease when the hv have a conflict with concepts. Each
channel of hv would be taken into account separately. This is accomplished with the following scaling
module. The module is composed of

~λ = 2× Sigmoid
(
W2ReLU

(
W1hv + b1

)
+ b2

)
hv = hv � ~λ (5)

where W1,W2, b1, b2 are trainable parameters in the scaling module.
Consider that the parameters of pretrained encoder-decoder model has been trained, simply adding an

parameters ~λ may destroys the distribution of encoder output statesH and leads to training failure. So we
try to initialize those parameters in scaling module with N(0, var), where var is a small value, then the
output with sigmoid activation would gather around 0.5, and 2× would make them fall near 1.0. Thus in
the beginning of training, the participation of scaling module would not lead to a mess.

2.3.2 Decoder with Prototype Position Indicator
These surrounding tokens of concept ones in prototype O tend to describe how these concepts interact

with the complete scenario, we argue that inform the decoder of these relative positions would help
decoder better learn effective scenario bias of the prototype O.

Before the computation of encoder-decoder-attention, we devise a position indicator function to assign
positions to those tokens in prototype. First, we assign virtual positions to tokens in prototype O in
sequence, from 1 to no. Second, we pick up the positions of those concept tokens in prototype as multiple
position centers. Third, for each token ov ∈ O, we compute the smallest distance from ov to those concept
tokens. The process is shown in Equation 6.

D(sv) = min
{
|v − p|, sp = c, sp ∈ O, c ∈ C

}
(6)

Our inputs tokens are composed of prototype ones and concept ones. Considering the particularity of
concept words C, we assign them with a default position value 0 and adjust the position indicator function
of prototype tokens through adding one, the process is shown in Equation 7.

D(sv) =

{
D(sv) + 1 sv ∈ O
0 sv ∈ C

(7)

On the basis of the prototype position indicator function in Equation 7, we add the information of
relative position from tokens to the closest concept tokens in prototype into encoder-decoder-attention
through Equation 8.

ED(hv) = ED

(
D(sv)

)
S(du, hv) =

(
Wqdu

)T (
Wkhv + ED(hv)

)/√
dk (8)

where ED is the embedding for those distance values in D . These prototype tokens that more close to the
concept tokens are expected to receive more attention than other tokens.

2.4 Training
Our training is to maximize the log-likelihood for T given O and C.

max
θ
log P (T |O, C, Gθ) = max

θ
log
∑
k

P (tk|O, C, Gθ, t<k) (9)
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Model ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE

bRNN-CopyNet 2.90 19.25 5.50 2.00 12.70 3.99 10.60
Trans-CopyNet 2.28 14.04 4.30 2.00 9.10 2.31 7.50
MeanPooling-CopyNet 3.30 19.35 6.60 2.40 13.50 4.34 13.00
LevenTrans 5.74 21.24 8.80 4.00 13.30 3.72 14.00

GPT-2 16.47 38.01 28.70 19.40 24.40 11.06 24.50
BERT-Gen 19.78 40.93 33.20 23.10 28.50 13.31 28.30
UniLM 21.57 41.96 38.30 27.50 29.40 14.92 29.90
UniLM-v2 21.02 42.41 34.80 24.30 29.80 14.61 30.00
T5 21.71 41.79 38.10 27.20 30.00 14.58 30.60
BART 22.38 41.44 35.10 24.90 30.50 13.32 30.10

RetrieveDout 7.84 26.25 12.70 7.50 18.40 4.95 15.00
BARTDout 22.87 43.77 41.20 30.30 31.50 15.82 31.80
EKI-BARTDout 24.36 45.42 42.90 32.10 32.00 16.80 32.50

RetrieveDin 18.49 40.73 35.00 26.40 29.90 12.91 27.90
BARTDin 23.15 44.71 42.20 32.40 32.30 16.43 32.70
EKI-BARTDin 25.43 46.53 46.00 36.10 33.80 17.80 33.40

Table 2: Overall performance of different models for CommonGen. Numbers in bold denote the best
performance in each column.

where tk in the kth token in T and t<k are the first (k − 1) tokens in T .
During prediction, we decode with beam search, and keep the sequence with highest predicted proba-

bility among those in the last beam.

3 Experiment

In this section, we conduct experiments to prove the effectiveness of our proposed approach. To dig into
our approach, we perform ablation studies to explore the different effects of scaling module and prototype
position indicator.

3.1 Prototype Collection
In-Domain Corpus Din CommonGen is to describe a common scenario in our daily life, datasets
of image captioning or video captioning would contain more knowledge about spatial relations, object
properties, physical rules, temporal event knowledge and social conventions that contribute to build the
target scene contains the these provided concepts. We utilize VaTeX (Wang et al., 2019), SNLI (Bowman
et al., 2015), Activity (Krishna et al., 2017) and the training set of CommonGen as the external plain text
knowledge datasets and retrieve prototype according to the concepts appear in the sentence.

Out-of-Domain Corpus Dout In-domain corpus Din may only suitable for these description sentence
for daily scenario and has difficulty in generalizing toother domains, thus we also employ wikipedia as
our external knowledge dataset to retrieve prototypes to test the generalization of our model.

The number of retrieved prototypes concepts that co-occur in ground truth sentence across different
external knowledge datasets Din and Dout is shown in Table 3. It is easy to conclude that we able to
retrieve more relevant prototypes from in-domain dataset Din compare to out-of-domain dataset Dout.

3.2 Experiment Settings
CommonGen (Lin et al., 2019b) dataset contains 27,069, 993 and 1497 concept-sets in training,

validation and test set, the sentences are 39,069, 4,018 and 6,042 respectively. The proportion of novel
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1 2 3 4 5

Din 2,179 17,664 16,356 2,538 332
Dout 3,009 21,441 12,278 2,069 272

Table 3: The number of retrieved prototypes concepts that co-occur in ground truth sentence across
different external knowledge datasets Din and Dout.

concept-sets in validation and test datasets are 95.53% and 98.49%, which require model to generalize
well to unseen concepts. We use BLEU-3/4 (Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005),
ROUGE-2/L (Lin and Hovy, 2003), CIDEr (Vedantam et al., 2015), and SPICE (Anderson et al., 2016) as
evaluation metrics.

We employ BART Large model (Lewis et al., 2019) as the pretrained generation model. We adopt
cross-entropy loss with 0.1 label-smoothing penalty. We use inverse-sqrt learning rate scheduler with
500 warmup steps, the learning rate, max-tokens per batch and max updates are 4e-5, 1024 and 5k. The
dropout rate is 0.1. We set the standard deviation of initialization in group embedding, scaling module
and prototype position indicator to 5e-3. The optimizer of model is Adam (Kingma and Ba, 2014) with
β1 = 0.9 and β2 = 0.999. During decoding, the size of beam search is 5 and the length penalty is 0.0.

3.3 Results
For the compared methods, we classify them into four groups.

Group 1 Models without pretraining. bRNN-CopyNet and Trans-CopyNet are based on the best
popular architecture Bidirectional RNNs and Transformers (Vaswani et al., 2017) with attention and copy
mechanism (Gu et al., 2016). MeanPooling-CopyNet is employed to deal with the influence of the concept
ordering in the sequential based methods, where the input concepts is randomly permuted multiple times
and decoding is with a mean pooling based MLP network. Levenshtein Transformer (Gu et al., 2019) is
an edit-based non-autoregressive generation model, where the generated sentences go through multiple
refinement.

Group 2 Pretrained language generation models including GPT-2 (Radford et al., 2019), UniLM (Dong
et al., 2019), UniLM-v2 (Bao et al., 2020), BERT-Gen (Bao et al., 2020), BART (Lewis et al., 2019), and
T5 (Raffel et al., 2019). All these models are trained with a seq2seq format.

Group 3&4 Comparable methods based on external knowledge dataset Din and Dout. RetrieveD∗ , ∗ ∈
{in, out} take the prototype retrieved fromDin andDout as the hypothesises. BARTD∗ , ∗ ∈ {in, out} feed
the concatenation of concepts and prototype retrieved from Din and Dout into BART. EKI-BARTD∗ , ∗ ∈
{in, out} apply our proposed model in Din and Dout, respectively.

We list the performance of different models in Table 2. According to the results, we have several
findings.

- Performance of pretrained models are far better than these models without pretraining, which demon-
strates that training from scratch with data in CommonGen does not suffice for the concepts-based
generation. Models pretrained in large scale corpus do learn more knowledge that would contribute to
the generation.

- The models with prototype retrieved fromDin are better than those withDout, this shows that in-domain
dataset Din consisting of daily scenario descriptions provide more relevant and high-quality prototype
than Dout.

- BARTD∗ and EKI-BARTD∗ , ∗ ∈ {in, out} both outperform the BART baseline, which indicates that
introduce external text knowledge as prototype would contribute to the concept based generation.
Prototype provides effective scenario bias to find out the reasonable concept combination for the
generation.
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Model
dev test

BLEU-3/4 CIDEr BLEU-3/4 CIDEr

Retrieve 35.30 26.70 13.50 35.00 26.40 12.91
BARTDin 41.60 32.20 16.25 42.20 32.40 16.43
BARTDin+GE 43.10 33.40 16.52 43.70 33.90 16.88
BARTDin+SM 44.10 34.20 17.06 44.70 34.80 17.11
BARTDin+GE+SM 44.70 35.00 17.20 45.20 35.50 17.40

BARTDin+GE+SM+PPI 45.40 35.60 17.60 46.00 36.10 17.80

Table 4: The performance of different modules combination with the external text knowledge dataset
Din. GE, SM and PPI are short for group embedding, scaling module and prototype position indicator,
respectively.

- EKI-BARTDin and EKI-BARTDout both perform better than their count-part models BARTDin and
BARTDout . Our model is able to achieve improvement in both in-domain and out-of-domain datasets.

3.4 Analysis

3.4.1 Ablation Study
In this section, we perform ablation study on the development and test dataset to dive into the effective-

ness of different components in our model. We use the Din as knowledge dataset. The baseline is the
retrieval-based model and the pretrained based model without any prototype text. Several findings stand
out:

- BARTDin+SE and BARTDin+GE+SM outperforms BARTDin and BARTDin+SM, respectively. This
shows that the group embedding that better distinguish concept and prototype would benefit to the
generation.

- BARTDin+SM and BARTDin+GE+SM perform better than BARTDin and BARTDin+GE, respectively.
This verifies the effectiveness of scaling module that better discriminate the noises and effective concepts
in retrieved prototypes.

- BARTDin+SE+SM+PPI performs better than BARTDin+SE+SM, achieving 0.7 and 0.8 BLEU-3 higher
in development and test dataset. This demonstrates that informing decoder of the distance from each
token to concepts would better identify these important factors in prototype.

3.4.2 Effect of Scaling Module
Here, we compare our scaling module with hard mask strategy. We have two implementations of hard

masking:

- HM1: After encoding, we mask the output states of O and only keep that of C.
- HM2: We mask these these states of tokens sv ∈ O,∀c ∈ C, c 6= sv.

The experiments is conducted in Din and we list the result in Table 5.
From the result in Table 5, first, we can see that BARTDin+GE+HM1, BARTDin+GE+HM2 and

BARTDin+GE+SM all perform better than the counter-part model BARTDin+GE, this verify that it is
necessary and beneficial to remove the noises in prototype. Second, performance of BARTDin+GE+SM
is better than both BARTDin+GE+HM1 and BARTDin+GE+HM2, this indicates that our scaling module
is better than the hard masking strategy HM1 and HM2. This phenomenon demonstrates that there exists
more effective additional concepts besides those concept tokens in prototype that would contribute to
build the target scene, directly masking these tokens would block the generator receiving these additional
information, but our scaling module is able to keep these additional information.
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Model
dev test

BLEU-3/4 CIDEr BLEU-3/4 CIDEr

BARTDin+GE 43.10 33.40 16.52 43.70 33.90 16.88
BARTDin+GE+HM1 43.90 34.00 16.84 44.60 34.50 16.96
BARTDin+GE+HM2 44.00 34.10 17.01 44.90 34.50 17.21
BARTDin+GE+SM 44.70 35.00 17.20 45.20 35.50 17.40

Table 5: The performance on plain text knowledge dataset Din. GE, SM and PPI are short for group
embedding, scaling module and prototype position indicator, respectively.

Figure 2: Number of missing concepts in RetrieveDin , BARTDin and EKI-BARTDin . X-axis is the missing
concept number in each sentence, Y-axis is the instance number in the test set of CommonGen.

3.4.3 Missing Concept Number in Generation
CommonGen aims to generate scenario description that contains all of these provided concepts. If the

model is able to find out the most plausible scene with these concepts, these would be no concepts missing
in the generated sentence. We want to check whether our model is able to find out better scene on the
basis of retrieved prototype, thus we compare the number of missing concepts in RetrieveDin , BARTDin

and EKI-BARTDin and list the results in Figure 2 to leave a direct impression.
From Figure 2, both BARTDin and EKI-BARTDin have another 300 instances that no concepts missing

than RetrieveDin , we easily conclude that the two models are able to inject more concepts into the retrieved
prototype and further edit the prototype to generate a more appropriate sentence. We also notice that
the number of instance with no concept missing of EKI-BARTDin is more than that of BARTDin , which
shows that BARTDin is more likely to ignore the provided concepts than BARTDin and being dominated
by noises in prototype. This also verifies that the ability of BARTDout in dealing with prototype noises is
stronger than BARTDin , and removing these noises benefits to finding out a more plausible scenario with
these concepts.

4 Related Work

4.1 Commonsense Reasoning
Recently, there are emerging works to investigate machine commonsense reasoning ability.

ATOMIC (Sap et al., 2019), Event2Mind (Rashkin et al., 2018), MCScript 2.0 (Ostermann et al., 2019),
SWAG (Zellers et al., 2018), HellaSWAG (Zellers et al., 2019), Story Cloze Test (Mostafazadeh et al.,
2017), CommonsenseQA (Talmor et al., 2018) and CommonGen (Lin et al., 2019b) are released to
reasoning over external knowledge besides the inputs for question answering or generation. Rajani et
al. (2019) explores adding human-written explanations to solve the problem. Lin et al. (2019a) constructs
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schema graphs from ConceptNet to reason over relevant commonsense knowledge. lv et al. (2020) focuses
on automatically extracting evidence from heterogeneous external knowledge and reasoning over the
extracted evidence to study this problem. Consider quite a few relationship reasoning over these concepts
require a variety of background knowledge such as spatial relations, object properties, physical rules,
temporal event knowledge, social conventions, etc., which may not be recorded in any existing knowledge
bases, this paper focuses on retrieve knowledge from plain text in order to introduce scenario bias for
concepts-set based generation.

4.2 Retrieve-and-Edit
The retrieve-and-edit approaches are developed for many tasks, including dialogue generation (Weston

et al., 2018; Song et al., 2016), language modeling (Guu et al., 2018), code generation (Hashimoto
et al., 2018) and text summarization (Rush et al., 2015; Cao et al., 2018a; Peng et al., 2019). Ji et
al. (2014) and Yan et al. (2016) focus on prototype ranking in the retrieval-based model but they do not
edit these retrieved prototype. Re3Sum (Cao et al., 2018b) is an LSTM-based model developed under the
retrieve-and-edit framework that retrieves multiple headlines and pick the single best retrieved headline,
then edited. Hashimoto et al. (Hashimoto et al., 2018) Hossain et al. (2020) presents a framework with
retrieve, edit and rerank on the basis of BERT (Devlin et al., 2018), but they do not deal with prototype
noise in an explicit manner. Song et al. (2016) introduces an extra encoder for the retrieved response,
and the output of the encoder, together with that of the query encoder, is utilized to feed the decoder.
Weston et al. (2018) simply concatenates the original query and the retrieves response as the input to the
encoder. Instead of solely using the retrieved response, Wu et al. (2019) further introduces to encodes
the lexical differences between the current query and the retrieved query. Pandey et al. (2018) proposes
to weight different training instances by context similarity. Different from these work, We explore the
retrieve-and-edit framework on the basis of pretrained encoder-decoder model, and identify the importance
of each token in prototype in a more fine-grained manner.

5 Conclusion and Future Work

In this paper, we have proposed a pretraining enhanced retrieve-and-edit model for commonsense
generation. The key of CommonGen is to identify the priority of the scene based on the concept
combination, we have scaling module to softly reduce the impact of prototype noises on generation and
prototype position indicator to help decoder better learn the prototype scenario. Our retrieve-and-edit
model with in-domain and out-of-domain dataset both achieve better performance. In future, we plan to
build the relationship of these concepts in a more structure manner.
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