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Abstract

We probe the layers in multilingual BERT (mBERT) for phylogenetic and geographic language
signals across 100 languages and compute language distances based on the mBERT representa-
tions. We 1) employ the language distances to infer and evaluate language trees, finding that they
are close to the reference family tree in terms of quartet tree distance, 2) perform distance matrix
regression analysis, finding that the language distances can be best explained by phylogenetic
and worst by structural factors and 3) present a novel measure for measuring diachronic meaning
stability (based on cross-lingual representation variability) which correlates significantly with
published ranked lists based on linguistic approaches. Our results contribute to the nascent field
of typological interpretability of cross-lingual text representations.

1 Introduction

Cross-lingual text representations have become extremely popular in NLP, since they promise universal
text processing in multiple human languages with labeled training data only in a single one. They go
back at least to the work of Klementiev et al. (2012), and have seen an exploding number of contributions
in recent years. Recent cross-lingual models provide representations for about 100 languages and vary
in their training objectives. In offline learning, cross-lingual representations are obtained by projecting
independently trained monolingual representations into a shared representational space using bilingual
lexical resources (Faruqui and Dyer, 2014; Artetxe et al., 2017). In joint learning (Wang et al., 2020),
the cross-lingual representations are learned directly, for example as a byproduct of large-scale machine
translation (Artetxe and Schwenk, 2018).

As parallel data is scarce for less frequent language pairs, the multilingual BERT model (mBERT)
simply trains the BERT architecture (Devlin et al., 2019) on multilingual input from Wikipedia. The
cross-lingual signal is thus only learned implicitly because mBERT uses the same representational space
independent of the input language. This naive approach yields surprisingly high scores for cross-lingual
downstream tasks, but the transfer does not work equally well for all languages. Pires et al. (2019) show
that the performance differences between languages are gradual and that the representational similarity
between languages seem to correlate with typological features. These relationships between languages
remain opaque in cross-lingual representations and pose a challenge for the evaluation of their adequacy.
Evaluations in down-stream tasks are an unreliable approximation because they can often be solved with-
out accounting for deep linguistic knowledge or for interdependencies between subgroups of languages
(Liang et al., 2020).

While more language-agnostic representations can be beneficial to improve the average performance
in task-oriented settings and to smooth the performance differences between high- and low-resource
languages (Libovickỳ et al., 2019; Zhao et al., 2020a), linguists are more interested in the representational
differences between languages. The field of computational historical linguistics, for example, examines
subtle semantic and syntactic cues to infer phylogenetic relations between languages (Rama and Borin,
2015; Jäger, 2014). Important aspects are the diachronic stability of word meaning (Pagel et al., 2007;

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



1215

Holman et al., 2008) and the analysis of structural properties for inferring deep language relationships
(Greenhill et al., 2010; Wichmann and Saunders, 2007).

Traditionally, these phenomena have been approximated using hand-selected word lists and typolog-
ical databases. Common ancestors for languages are typically inferred based on cases of shared word
meaning and surface form overlap and it can be assumed that these core properties are also captured in
large-scale cross-lingual representations to a certain extent. For example, Beinborn and Choenni (2019)
find that phylogenetic relations between languages can be reconstructed from cross-lingual representa-
tions if the training objective optimizes monolingual semantic constraints for each language separately
as in the multilingual MUSE model (Conneau et al., 2017). MUSE is restricted to only 29 frequent lan-
guages, however. While mBERT is a powerful cross-lingual model covering an order of magnitude more
languages (104), a better understanding of the type of signal captured in its representations is needed
to assess its applicability as a testbed for cross-lingual or historical linguistic hypotheses. Our analysis
quantifies the representational similarity across languages in mBERT and disentangles it along genetic,
geographic, and structural factors.

In general, the urge to improve the interpretability of internal neural representations has become a
major research field in recent years. Whereas dense representations of images can be projected back
to pixels to facilitate visual inspection, interpreting the linguistic information captured in dense repre-
sentation of languages is more complex (Alishahi et al., 2019; Conneau and Kiela, 2018). Diagnostic
classifiers (Hupkes et al., 2018), representational stability analysis (Abnar et al., 2019) and indirect vi-
sualization techniques (Belinkov and Glass, 2019) are only a few examples for newly developed probing
techniques. They are used to examine whether the representations capture part-of-speech information
(Zhang and Bowman, 2018), syntactic agreement (Giulianelli et al., 2018), speech features (Chrupała et
al., 2017), and cognitive cues (Wehbe et al., 2014). However, the majority of these interpretability studies
focus solely on English. Krasnowska-Kieraś and Wróblewska (2019) perform a contrastive analysis of
the syntactic interpretability of English and Polish representations and Eger et al. (2020) probe represen-
tations in three lower-resource languages. Cross-lingual interpretability research for multiple languages
focuses on the ability to transfer representational knowledge across languages for zero-shot semantics
(Pires et al., 2019) and for syntactic phenomena (Dhar and Bisazza, 2018). In this work, we contribute
to the nascent field of typological and comparative linguistic interpretability of language representations
at scale (Kudugunta et al., 2019) and analyze representations for more than 100 languages.

Our contributions: We probe the representations of one of the current most popular cross-lingual
models (mBERT) and find that mBERT lacks information to perform well on cross-lingual semantic
retrieval, but can indeed be used to accurately infer a phylogenetic language tree for 100 languages.
Our results indicate that the quality of the induced tree depends on the inference algorithm and might
also be the effect of several conflated signals. In order to better disentangle phylogenetic, geographic,
and structural factors, we go beyond simple tree comparison and probe language distances inferred from
cross-lingual representations by means of multiple regression. We find phylogenetic similarity to be
the strongest and structural similarity to be the weakest signal in our experiments. The phylogenetic
signal is present across all layers of mBERT. Our analysis not only contributes to a better interpretation
and understanding of mBERT, but may also help explain its cross-lingual behavior in downstream tasks
(Pires et al., 2019).1

2 Related work

Representational distance between two languages refers to the (averaged) differences between model
representations for selected concepts in the two languages. Interpretability analyses attempt to disen-
tangle the typological factors that influence the representational distance. In this work, we distinguish
between phylogenetic, geographic and structural factors. Two languages are considered to be phyloge-
netically close if they descend from a common ancestor language. Geographically close languages are
languages which are primarily spoken in regions with a small physical distance on Earth. Structural sim-
ilarity between languages refers to shared syntactic and morphological features. For many languages,

1Our code and data are available from https://github.com/PhyloStar/mBertTypology.



1216

the three categories overlap, but they are not necessarily linked. For example, Spanish and Basque are
geographically close, but structurally and phylogenetically quite distant.

Previous approaches differ in the type of cross-lingual representations, the number of languages, and
the methodology for determining representational distance and for interpreting the typological signal.
Kudugunta et al. (2019) obtain representations for 102 language pairs (English ↔ language X) using
neural machine translation and then visualize the representations using dimensionality reduction. They
explore the visualization qualitatively and find clusters which resemble language families. However,
when zooming into the clusters, it becomes evident that a mixture of genetic and geographic factors
contributes to the representational distance. For instance, Dravidian and Indo-Aryan languages overlap
completely.

Eger et al. (2016) induce bilingual vector spaces for 21 Europarl languages and quantify representa-
tional distance between languages by averaging over the pairwise similarity between word representa-
tions. They find that the differences can be better explained by geographic than by phylogenetic factors.
Conversely, Rabinovich et al. (2017) analyze English translations of sentences in 17 Europarl languages
and find that syntactic traces of the native language of the translator can best be explained by language
genetics. Bjerva et al. (2019) use the same dataset and train language representations on the linguis-
tic structure of the sentences. They find that the representational distance between languages can be
better explained by structural similarity (obtained from dependency trees) than by language genetics.
Pretrained cross-lingual models are optimized for tasks such as bilingual lexicon induction and machine
translation. Even if linguistic information is not explicitly provided during training, recent interpretabil-
ity research indicates that phylogenetic properties are encoded in the resulting representations. Beinborn
and Choenni (2019) obtain representations for Swadesh word lists from the MUSE model (Conneau
et al., 2017) which jointly optimizes monolingual and crosslingual semantic constraints. They find that
hiearchical clustering over the representational distance between languages yields phylogenetically plau-
sible language trees. Interestingly, they cannot trace the phylogenetic signal in representations from the
sentence-based LASER model (Artetxe and Schwenk, 2018) which is trained to learn language-neutral
representations for machine translation. Libovickỳ et al. (2019) analyze representations from mBERT
and find that clustering over averaged representations for the 104 languages yields phylogenetically plau-
sible language groups. They argue that mBERT is not language-neutral and that semantic phenomena are
not modeled properly across languages. In our analysis, we further quantify the representational distance
and disentangle it along phylogenetic, geographic, and structural factors.

Bjerva and Augenstein (2018) train cross-lingual representations in an unsupervised way for different
linguistic levels including phonology, morphology, and syntax. They use them to infer missing typologi-
cal features for more than 800 languages. Malaviya et al. (2017) also infer missing features in typological
databases from cross-lingual representations. Inferring such missing features can be considered a form
of probing. Indeed, in contemporaneous work, Choenni and Shutova (2020) predict typological prop-
erties from representations of four different recent state-of-the-art cross-lingual encoders using probing
classifiers. We do not use probing classifiers in our work because the choice of classifier and the size of
its training data may affect the probing outcomes (Eger et al., 2020).

Table 1 summarizes selected interpretability approaches analyzing the typological signal in crosslin-
gual representations. The findings for the dominant signal type vary strongly due to different choices
for the representational model, the analysis unit, and the number of languages. Our work differs from
previous work mainly in terms of the battery of tests probing for genetic and typological signals and the
preciseness in teasing apart the different typological components.

3 Methodology

In the following, we first briefly describe the two cross-lingual embedding spaces analyzed in this work,
mBERT and FastText (§3.1). Then, we detail how we compute distances between languages using repre-
sentations from these spaces (§3.2) and concept lists developed in historical linguistics (§3.3). Once we
have language distances, we infer trees from distance matrices and compare these trees to gold standard
phylogenetic trees (§3.4) to evaluate how strong a historical linguistic tree signal is contained in our
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Approach Representational Target Unit # Languages Dominant Signal

Malaviya et al. (2017) translation sentences 1,017 structural
Rabinovich et al. (2017) syntax sentences 17 phylogenetic
Bjerva et al. (2019) syntax sentences 20 structural
Eger et al. (2016) semantics words 21 geographical
Beinborn and Choenni (2019) semantics words 28 geographical
Libovickỳ et al. (2019) semantics sentences 104 phylogenetic

Table 1: Summary of related work on typological interpretability of crosslingual representations.

cross-lingual representations (§4).

3.1 Cross-lingual Representations
We compare two different models: mBERT ia a cross-lingual model trained with a language-neutral
contextualized objective and FastText stands for static monolingual word representations that have been
aligned into a joint multilingual space.

mBERT mBERT is based on the multi-layer bidirectional transformer model BERT (Devlin et al.,
2019). It is trained on the task of masked language modeling and next sentence prediction. The base
model consists of 12 representational layers. mBERT is trained on the merged Wikipedias of 104 lan-
guages, with a shared word-piece vocabulary. It does not use explicit alignments across languages, thus
has no mechanism to enforce that translation equivalent word pairs have similar representations. Re-
cently, there has been a vivid debate regarding the quality of representations produced by mBERT. Pires
et al. (2019) claim that it is surprisingly good at zero-shot cross-lingual transfer, and works best for
structurally similar languages. Cao et al. (2020) find that mBERT exhibits vector space misalignment
across languages and zero-shot cross-lingual transfer is improved after their suggested re-mapping. K et
al. (2020) show that lexical overlap plays no big role in cross-lingual transfer for mBERT, but the depth
of the network does, with deeper models having better transfer. Zhao et al. (2020b) find that mBERT
lacks fine-grained cross-lingual text understanding and can be fooled by adversarial inputs produced by
the corrupt input produced by MT systems.

FastText FastText (Bojanowski et al., 2017) builds static word representations on the basis of a word’s
characters. This allows it to induce better representations for infrequent and unknown words. We use
a joint multilingually aligned vector space spanning 44 languages using the RCLS method described in
Joulin et al. (2018) and refer to it as mFastText.2

3.2 Representational Distance
Assume we have M languages and N concepts (illustrated in Table 4 in the appendix). Assume further
that each concept is expressed as a word in each language which is represented by a d-dimensional vector.

If all the vectors reside in a cross-lingually shared space, then the representational distance between
two languages can be obtained by averaging the pairwise distances between all word vectors in the two
languages for the N concepts. That means one computes:

dist(i, j) =
1

N

N∑
k=1

d(vk(i),vk(j)) (1)

where vk(i) and vk(j) stand for the vectors corresponding to the k-th concept for languages i and j,
respectively (with words vk(i) and vk(j)). In our experiments, we use cosine distance, but d may in
principle refer to any suitable distance measure, e.g., Euclidean distance or Spearman correlation.3,4

2https://fasttext.cc/docs/en/aligned-vectors.html
3Note that we compute the average of the distances, while it is also possible to compute the distance of the average repre-

sentations (Libovickỳ et al., 2019).
4An alternative to this direct comparison of the word vectors is a ‘second-order’ encoding where the representation v̂k(i) for

a word is determined by the distances of its vector vk(i) to the vectors for the N concepts (Eger and Mehler, 2016; Beinborn
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When the corresponding words for each concept are not available in all languages, but only in one
language (e.g., English), Beinborn and Choenni (2019) instead set vk(i) to be the nearest neighbor of the
English word for concept k in language i. This has the advantage that one can infer language distances
without translation data in target languages. A drawback of this approach is that the relation between
nearest neighbors in a vector space may not be that of similarity but of relatedness, e.g., nose is related
to mouth, but it is not a synonym (meaning-equivalent).

In our experiments below, words for all concepts k are available in all languages, thus we do not need
to resort to nearest neighbors of the English words.

3.3 Concept Lists

All our experiments are based on multilingual word lists obtained from linguistic databases.
NorthEuraLex5 features word lists for 1,016 concepts in 100 languages spoken in Northern Eurasia which
have been transcribed by linguists (Dellert et al., 2020). The database is known for its high quality, but
unfortunately covers only 54 of the 104 languages in mBERT. In order to analyze more languages, we
additionally use PanLex6 which contains lists for 207 concepts in more than 500 languages (Kamholz et
al., 2014). It covers 99 languages in mBERT, but the quality of the word lists is not uniform across lan-
guages. PanLex sometimes includes multiple word lists written in different scripts for the same language,
e.g. for Greek. In such a case, we include all available word lists for the language in our analysis.

3.4 Evaluating language trees

Historical differences between languages are commonly represented in phylogenetic trees which group
languages by their evolution from common ancestors. We want to examine to which extent these phy-
logenetic differences can explain the observed representational distance in the cross-lingual model. We
calculate all pairwise representational distances between languages as in Eq. (1). From this distance
matrix, we infer a language tree using two inference techniques that are widely popular in computational
biology for inferring species trees: 1) The unweighted pair group method with arithmetic mean (UP-
GMA) (Sokal and Michener, 1958) initially assumes that each language forms an individual cluster and
then successively joins the two clusters with the smallest average distance. 2) The iterative Neighbor
Joining (Saitou and Nei, 1987) algorithm starts with an unstructured star-like tree and iteratively adds
nodes to create subtrees.

Reference tree Most automatic clustering methods produce binary trees due to computational simpli-
fications whereas phylogenetic trees by linguistic experts are usually m-ary. To faciliate the evaluation
of the inferred tree, previous work used a binary Levenshtein-based approximation (Serva and Petroni,
2008) as reference tree. This approximation provides an acceptable reference for a small subset of lan-
guages, but does not accurately reflect the more fine-grained differences for the Indo-European language
family (Fortson, 2004). As we are evaluating a much larger set of languages here, we use the more reli-
able reference trees compiled by linguistic experts available in Glottolog (Hammarström et al., 2020).

Tree evaluation In order to compare the m-ary reference tree to the binary inferred tree, we apply
a variant of quartet distance known as generalized quartet distance (Pompei et al., 2011). This metric
evaluates the quality of the whole tree by comparing subgroups of four languages (quartets) which form
so-called butterfly structures. A butterfly quartet refers to a quartet in which the four languages can be
structured as two pairs of languages belonging to the same subfamily. For example, the pairs Span-
ish/Italian and Russian/Ukrainian form a butterfly structure whereas the four languages Hindi-German-

and Choenni, 2019):

v̂k(i) =
(
d(vk(i),vn(i))

)
n∈[1,...,N ]

Then, v̂k(·) ∈ RN while vk(·) ∈ Rd. These second-order vectors can be used in Eq. (1) to replace the original vectors vk.
5http://northeuralex.org/
6http://dev.panlex.org/db/panlex_swadesh.zip
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Armenian-Latin all belong to different subgroups which are directly connected to the root node of the
Indo-European tree. We evaluate our inferred tree by calculating the number of butterfly quartets which
deviate from the reference tree normalized by the number of all butterfly quartets in the reference tree.

It is also possible to subject the distance matrix to other forms of clustering or dimensionality reduction
techniques such as k-nearest neighbor, PCA, or t-sne (Maaten and Hinton, 2008). However, such flat
clustering methods do not induce a tree structure and are not directly comparable to the reference trees
of language families available in an online repository such as Glottolog (Hammarström et al., 2020).

4 Experiments

In the following, we detail a series of probing experiments with both mBERT and FastText. To extract
representations from mBERT, we feed a single word vk(i) from a language i corresponding to concept
k into mBERT and extract the corresponding representations v(r)

k (i) in all layers r = 0, . . . , 12. We are
fully aware that using mBERT in a context-independent way ignores main benefits of the model. We do
so in order to leverage concept lists at large scale for a majority of the 100 languages available in mBERT.
Otherwise, we would have to experiment with sentence-aligned data, which is available only for much
smaller subsets (< 30) of our languages. Nevertheless, we believe that a good contextual model should
also be equipped with good context-independent token representations.

4.1 Cross-lingual Semantics

Monolingual language models are commonly evaluated by their ability to model semantic similarity and
their performance on downstream tasks. For multilingual models, a suitable evaluation task for lexical
semantics is bilingual lexicon induction (BLI). The goal is to take an input word in the source language
and retrieve its translation-equivalent in the target language. In a decontextualized setting, multiple
targets can be considered to be a correct translation due to the polysemy of words. As the word lists only
account for a single correct solution, we cast bilingual lexicon induction as a ranking task. We rank all
target words in the concept list based on their representational distance to the source word in the model
and evaluate this ranking using the mean reciprocal rank (MRR) as proposed in Glavaš et al. (2019). The
MRR ranges from 0 to 1; a value of 1 indicates that the target is correctly ranked on 1, a value of 1/n
indicates that the target is on averaged ranked on n.

For the PanLex list of 207 words, the MRR obtained by a random baseline would be 0.03. The result
of mBERT for the language pair (bos,hrv) is almost perfect with an MRR of 0.98, but for pairs of
more distant languages the BLI quality is considerably lower. Overall, the average performance for
mBERT (0.16) is five times better than random guessing, but consistently lower than the performance for
mFastText (0.46 on average).7 Overall, this shows that mBERT does not properly capture multilingual
semantics, a finding that is echoed in some other recent works (Cao et al., 2020; Zhao et al., 2020b). The
apparent reason lies in its naive training process, which does not exploit cross-lingual signals but merely
trains on the concatenation of all languages. Nonetheless, the model performs surprisingly well in some
downstream cross-lingual tasks (Pires et al., 2019). In the following experiments, we examine whether
the model instead relies on typological properties of languages.

4.2 Phylogenetic signal

We perform tree inference using both Neighbor-Joining (NJ) and UPGMA on the concept lists from
PanLex (99 languages) and NorthEuraLex (54 languages). We infer trees for all the layers of mBERT
and evaluate the quality of the inferred trees as described in Section 3.4. Table 2 shows that especially
the initial-middle and the final layers of mBERT yield a small distance to the gold standard trees.

Overall, however, the strength of the phylogenetic signal varies with respect to the selected concept list
and the tree inference algorithm. Interestingly, the results for the PanLex word list are better although
this setup covers more languages. UPGMA yields lower distances to the gold tree for both concept
lists. In comparison, the results for mFastText are considerably worse when using UPGMA (>0.5), but

7Only for 12 language pairs, the MRR is higher for mBERT than for mFastText
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comparable when using NJ (around 0.32). It should be noted though that mFastText covers only 44
languages.

Method Word List 0 1 2 3 4 5 6 7 8 9 10 11 12 Avg.

UPGMA PanLex .34 .30 .17 .18 .21 .26 .28 .20 .23 .21 .22 .23 .21 .20
NorthEuralex .43 .29 .26 .28 .30 .31 .31 .35 .34 .32 .37 .34 .32 .31

NJ PanLex .38 .31 .30 .30 .26 .31 .25 .32 .32 .32 .35 .34 .30 .30
NorthEuralex .41 .36 .35 .32 .32 .31 .31 .32 .32 .32 .32 .32 .40 .37

Table 2: Distances between the Glottolog reference tree and the phylogenetic tree inferred from mBERT
representations from the 12 different layers and the average of all layers. Generalized quarted distances
range between 0 and 1, lower distances are better.

Visual exploration In order to qualitatively analyze representational distances, we subject the distance
matrix from the second layer (which yields the best scores according to UPGMA) to the t-sne algorithm
as in previous work (Libovickỳ et al., 2019; Kudugunta et al., 2019). The visualization in Figure 1 clearly
shows a mix of phylogenetic and other clusters. Instances of phylogenetic clusters include separation of
Germanic languages (excluding English which is placed apart) and Romance languages in the lower left.
In contrast, the three Dravidian languages (Tamil, Malayalam,Telugu) are placed on the right most part of
the plot together with Hindi and Bengali (Indo-European languages), illustrating more of a geographical
similarity. The Slavic languages show up in two clusters: 1) Western Slavic Languages (Polish, Czech,
and Slovak in the lower half) 2) Eastern Slavic languages such as Russian and Ukranian together with
Turkic languages such as Azeri and Kazakh written in Cyrllic script. At the same time, the different word
lists of Azeri (written in different scripts) are placed together, suggesting that mBERT representations
are also script-agnostic. Uralic languages such as Finnish and Estonian are closer to the other Baltic
languages which are not clustered together with the other Slavic languages. These clusters cannot be
sufficiently explained solely by phylogenetic properties.
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Figure 1: The t-sne plot for the Swadesh list distances from layer 2. The family codes are from the ASJP
database (Wichmann et al., 2020) and are explained in Table 5 in appendix.
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4.3 Other typological signals
In order to better disentangle the typological signal, we examine additional categories established by
Littell et al. (2017). We determine the explainable predictors for the representational distances between
languages using matrix regression (Legendre et al., 1994). We regress dij = dist(i, j) computed based
on Eq. (1) on the following language distances:

• Phylogenetic distance (genij) between two languages computed from Glottolog reference trees as
the ratio between the number of non-shared branches divided by the number of branches from root
to the tip.

• Geographical distance (geoij) between two points on Earth approximated through great circle dis-
tance (Department, 1997).

• Structural distance (strucij): Cosine distance computed over averaged syntactic features from
WALS8, SSWL9, and mini-grammars parsed from Ethnologue (Lewis, 2009).

• Phonological distance (phonij): Cosine distance computed over averaged phonological features
available in WALS and Ethnologue.

• Phoneme Inventory distance (invij): Cosine distance computed between binary feature vectors as
given in the PHOIBLE database (Moran and McCloy, 2019) which consist of features such as
presence or absence of retroflex sounds in a language.

For detailed description of the distances, see Littell et al. (2017).10 In our experiments, we use the
precomputed distance matrices provided along with the lang2vec Python package11. We estimate the
coefficients as follows:

dij = c+ α · genij + β · geoij + γ · strucij + η · phonij + λ · invij (2)

Since the entries in the distance matrices are non-independent, we use matrix regression analysis (Leg-
endre et al., 1994) as implemented in the R package ecodist (Goslee et al., 2007) for computing the
regression coefficients. The significance of the regression coefficients is also tested using a Mantel test
where the matrix columns are permuted 105 times.

The significant regression coefficients (p < 0.001) and their sizes are shown in Figure 2. The phylo-
genetic signal in mBERT is stronger than the geographical signal and this is especially true for PanLex
where the geographical signal is never significant. The genetic signal is more prominent in the initial
layers. It then decreases over layers, but re-emerges in the final layer. As we use isolated concepts in
our setup, we did not expect structural features to be a significant predictor at all and are surprised about
the PanLex results. We further hypothesized that phonological distances might be a weak but significant
predictor due to related words (both cognates and borrowings) and shared scripts (also showing up in the
t-sne plot in Figure 1) which is not supported in our experiments.

Overall, we find that the R2 values (see Table 3) from the regression analyses are significant across all
the layers for both the datasets, but they are not very large. This suggests that there exist other factors
explaining the representational distances that our equation does not account for or that the linear model
is not fully appropriate. In the case of the mFastText model, the R2 value is at about 0.24 but none of the
regression coefficients are significant.

4.4 Meaning Stability
We calculate cross-lingual variability in mBERT by considering the pairwise cosine similarities between
representations in languages i and j for all concepts k in PanLex:

cij(k) = cossim(vk(i),vk(j)) (3)

8https://wals.info/
9http://test.terraling.com/groups/7

10http://www.cs.cmu.edu/˜dmortens/uriel.html
11https://github.com/antonisa/lang2vec
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Figure 2: The coefficient values (α, β, γ) from Eq. (2) for each mBERT layer.

0 1 2 3 4 5 6 7 8 9 10 11 12 Avg.

PanLex .39 .39 .41 .37 .34 .28 .27 .29 .29 .25 .23 .25 .36 .37
NorthEuralex .39 .45 .48 .55 .54 .50 .46 .43 .40 .37 .36 .30 .40 .48

Table 3: R2 values from the regression analyses for each layer.

and then analyzing how these cosine similarities vary. We conjecture that variability of mBERT rep-
resentations of a concept k across languages is indicative of its diachronic stability, where diachronic
meaning stability measures the resistance of a concept to lexical replacement.
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Figure 3: Correlation between variability of cross-lingual representations from mBERT and diachronic
stability lists (significant at p < .01).

To capture cross-lingual variability, we calculate statistics s on the cij(k) values. As statistics,
we consider the mean and standard deviation values of cij(k) for each fixed concept k. Thus,
each concept k receives a ‘variability score’ s(k) given by s applied to the cij(k) values: s(k) =
s (c12(k), c13(k), . . . , c1M (k), . . . ), where M is the number of languages involved. Note that the stan-
dard deviation statistic (intuitively) captures the notion of cross-lingual variability while the mean statis-
tic measures the average degree of similarity of the representations of words for a target concept across
languages.

We finally correlate the statistics with diachronic stability scores for concepts k extracted from the
following lists: (i) ranked list of Holman et al. (2008); (ii) WOLD’s (World Loanword Database; Haspel-
math and Tadmor (2009)) meaning scores for age, simplicity, and borrowing; (iii) 100-item Leipzig-
Jakarta list (Tadmor, 2009) and its replication (LJ-replica) based on later versions of the WOLD scores
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(Dellert and Buch, 2018); (iv) Swadesh list ranked by word replacement rates computed from a phyloge-
netic analysis (Pagel et al., 2007); (v) n-gram entropy based stability measure (Rama and Borin, 2014);
(vi) inf, a information-theoretic weighted string similarity (Dellert and Buch, 2018); (vii) and a Leven-
shtein distance based measure (Petroni and Serva, 2011). All the ranked lists are drawn from Dellert and
Buch (2018).

Figure 3a shows the correlation between s(k) and diachronic stability when the statistic is the mean. It
can be seen that Layers 3–7 and 10–11 correlate positively with Pagel et al. (2007) and inf. This suggests
that the mean statistic measures susceptibility to replacement as opposed to stability since in both the
lists, the higher the score, the lower is a concept’s stability. Layer 12 correlates with 5 of the 9 lists and
shows positive correlation with both WOLD’s age and simplicity scores and LJ-replica. In contrast, layer
12 correlates negatively with both Pagel et al. (2007) and inf, suggesting that the measure is inconsistent
in the layer. The mean statistic is also not consistent across the layers and shows inverse correlations
with inf and Pagel et al. (2007) in layer 12 compared to the other layers.

The correlations from standard deviation statistic is given in Figure 3b. Here, layers 0–5 show correla-
tions with 8 of the 9 ranked lists. In layers 0–5, the upper half of the figure has positive correlations with
word lists ranked by decreasing order of stability (LJ-replica, Petroni and Serva (2011) and Holman et al.
(2008)) whereas the lower half of the figure correlates negatively with the rankings of Pagel et al. (2007),
inf and Rama and Borin (2014) where a lower score for a meaning indicates higher stability. Layers
0–7 & 10–12 correlate positively with WOLD indices such as age and simplicity. There is a negative
correlation with inf and a positive correlation with the measure of Petroni and Serva (2011) across all the
layers. The standard deviation statistic is consistent across all the layers in terms of correlations against
the 9 lists.

We conclude from this experiment that cross-lingual variability of representations in mBERT, as mea-
sured by standard deviation,12 indeed correlates with diachronic (cross-temporal) stability as given by
proposed historical linguistic indicators.

5 Concluding remarks

We applied a series of tests for probing mBERT for typological signals. While the language trees inferred
from mBERT representations are sometimes close to the reference trees, they may confound multiple fac-
tors. A more-fined grained investigation of t-sne plots followed by matrix regression analyses suggests
that representational distances correlate most with phylogenetic and geographical distances between lan-
guages. Further, the rankings from cross-lingual stability scores correlate significantly with meaning lists
for items supposed to be resistant to cross-temporal lexical replacement.

Our results contribute to the recent discourses on interpretability and introspection of black-box NLP
representations (Conneau et al., 2018; Kudugunta et al., 2019; Jacovi and Goldberg, 2020). In our case,
we asked how mBERT perceives of the similarity of two languages and related this to phylogenetic,
geographic and structural factors. In future work, we aim to use our inferred similarities to predict
transfer behavior in downstream tasks between specific language pairs.

Finally, we strongly caution against using our conclusions as support for hypotheses relating semantics
and language phylogeny (e.g., the Sapir-Whorf hypothesis). Our results for bilingual lexicon induction
indicate that mBERT representations are only mildly semantic cross-lingually which corroborates similar
findings in related work.
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A Example list

English German French · · ·

I I ich je · · ·
YOU you du tu · · ·
HE he er il · · ·
MAN man Mann homme · · ·
...

Table 4: Schematic illustration of concept lists.

B Family codes list

Family Code Family Name

AA Afro-Asiatic
An Austronesian
AuA Austro-Asiatic
Bas Basque
Dra Dravidian
IE Indo-European
Jap Japonic
Kor Koreanic
Krt Kartvelian
NC Niger-Congo
NDa Nakh-Dagestan
ST Sino-Tibetan
Tur Turkic
Ura Uralic

Table 5: Family codes list


