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Abstract

Currently, in spoken language understanding (SLU) systems, the automatic speech recognition
(ASR) module produces multiple interpretations (or hypotheses) for the input audio signal and the
natural language understanding (NLU) module takes the one with the highest confidence score for
domain or intent classification. However, the interpretations can be noisy, and solely relying on one
interpretation can cause information loss. To address the problem, many research works attempt
to rerank the interpretations for a better choice while some recent works get better performance
by integrating all the hypotheses during prediction. In this paper, we follow the way of integrating
hypotheses but strengthen the training mode by involving more tasks, some of which may be not
in existing tasks of NLU but relevant, via multi-task learning or transfer learning. Moreover, we
propose the Hierarchical Attention Mechanism (HAM) to further improve the performance with
the acoustic-model features like confidence scores, which are ignored in the current hypotheses
integration models. The experimental results show that compared to the standard estimation
with one hypothesis, the multi-task learning with HAM can improve the domain and intent
classification by relatively 19% and 37%, which are much higher than improvements with current
integration or reranking methods. To illustrate the cause of improvements brought by our model,
we decode the hidden representations of some utterance examples and compare the generated
texts with hypotheses and transcripts. The comparison shows that our model could recover the
transcription by integrating the fragmented information among hypotheses and identifying the
frequent error patterns of the ASR module, and even rewrite the query for a better understanding,
which reveals the characteristic of multi-task learning of broadcasting knowledge.

1 Introduction

In an SLU system (Tur and De Mori, 2011), the domains and intents are usually inferred by natural
language understanding (NLU) modules with the hypotheses mapped from input speech by ASR module.
For each speech audio, the transferred hypothesis is the one with the highest recognition score. However,
due to the unsatisfactory ASR accuracy (Xiong et al., 2018; Barker et al., 2018), the 1-best hypothesis
may contain errors. To solve the problem, there are some research works rescoring (reranking) the
=-best hypotheses1 to reduce the word error rate (WER) by dual comparison with a discriminative
language model (Ogawa et al., 2018; Ogawa et al., 2019); or involving morphological, lexical, syntactic
or confidence score features for reranking (Sak et al., 2011; Collins et al., 2005; Chan and Woodland,
2004; Peng et al., 2013; Morbini et al., 2012).
In contrast to the reranking models, which predict only one hypothesis with the lowest WER and

transfer that hypothesis to NLU modules, there is recently another attempt to integrate the fragmented
information among the =-best hypotheses by feeding all the hypotheses together to NLU modules (Li
et al., 2020; Li, 2020). The proposed approaches to integrating hypotheses include hypothesized text

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.

1We use ASR =-best hypotheses or =-bests to denote the top = interpretations of a speech and the 1-best or 5-best stands for
the top 1 or 5 hypotheses. The hypotheses are ranked by the associated confidence scores.
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concatenation (Combined Sentence) and hypotheses embedding concatenation (PoolingAvg and Pooling-
Max). Compared to the accuracy on the oracle reranking results (i.e., picking the hypothesis most similar
to transcription), the PoolingAvg achieves much higher improvements for the NLU tasks. However,
the integration framework can be further improved by introducing more tasks with Multi-Task Learning
(MTL) or Transfer Learning and involving more features to optimize the integration process.
MTL (Zhang and Yang, 2017; Liu et al., 2019; Caruana, 1997) is a widely used machine learning

paradigm for simultaneously training related tasks. In theMTL training, one task can apply the knowledge
learned from others. MTL can improve the generalization of the trained model by avoiding overfitting
to a single task and make full use of all the labeled data from all tasks to solve the issue of insufficient
training data. The MTL has been shown efficient for some natural language processing tasks outside the
SLU system like text similarity, pairwise text classification (Liu et al., 2019). In contrast to multi-task
learning, by transfer learning or domain adaption (Pan and Yang, 2009; Howard and Ruder, 2018; Torrey
and Shavlik, 2010), some tasks (source tasks) can be trained in the first stage knowing nothing about
the other tasks (target tasks). While in the second stage, the embeddings from pre-trained model are
fine-tuned according to the target mission. The transfer learning cares more about the target tasks. Some
popular fine-tunable pre-trained models like BERT (Devlin et al., 2018), ELMO (Peters et al., 2018) nail
down the transfer learning in NLP.
The rest of the paper is organized as follows. Sec. 2 presents various models and training paradigms

explored in this work. Sec. 3 describes our experimental details, results and analysis. Sec. 4 concludes
our findings and discusses the future directions.

2 Models

We start by reviewing different categories of SLU system designs in Sec. 2.1. Those designs have
achieved great success, but they are trained solely on one task and cannot borrow the knowledge from
some relevant tasks like transcription reconstruction. To involve more tasks during training, we explore
two paradigms to: 1) train them simultaneously in a single stage (Sec. 2.2), which is actually multi-task
learning; 2) train them asynchronously (Sec. 2.3) in multiple stages, which includes two ways of using
the pre-trained model from the first stage (transfer learning or text generation). In Sec. 2.4, we illustrate
the importance of acoustic-model features and the way of utilizing them hierarchically.

2.1 The Standard SLU, Reranking, Integration And Oracle

ASR

Human

RerankBaseline

Integration (e.g. PoolingAvg)
n-bests

OracleTranscription

NLU
1 sentence

1 vector

or Domain

Intent

Figure 1: The pipelines of current SLU systems with various ways to exploit hypotheses (with the Oracle).

We firstly review the current designs for the SLU system in Figure 1, which include the standard
pipeline (Baseline), Reranking and Integration models. In production, the input audio is transcribed by
ASR to get =-best hypotheses. Then, the Baseline model will take the one with the highest confidence
score for NLU tasks. Nevertheless, the Reranking models do not solely rely on the confidence scores
generated by the ASR module. They prefer to rescore the interpretations based on more features like
semantic information and choose the most reliable one. Both Baseline and Reranking models transfer one
sentence to the NLU module for classification. However, some recent works like (Li et al., 2020) indicate
this causes information loss and attempt to use all the hypotheses during classification. They embed each
hypothesis to one vector and unify the vectors to one by a pooling layer, which becomes the input to the
NLU task. Ideally, we can make the hypothesis close to the transcribed sentence by humans. To know
the ceiling point of performance, there is always the Oracle model predicting with human transcriptions.



115

Figure 2: The architecture of multi-task training in a single stage or different stages. The left side is
training all tasks (TR, DC, IC) in the same stage while the right side is to train TR firstly and fine-tune or
generate texts base on the pre-trained TR model for DC and IC.

2.2 Multi-task Learning: Training Tasks Simultaneously in A Single Stage (MT_S)
Although the current approaches have gained a large improvement, their training is exclusive for one task
each time and overlooks the knowledge from other tasks, which can be improved by considering more
relevant tasks simultaneously with MTL. The left side of Figure 2 shows the design of training multiple
tasks (transcription reconstruction, domain classification and intent classification) simultaneously for
integrating =-bests. The lower layers are shared and the top two layers are task-specific.

Shared Layers: In shared layers, the input - = {G1, ...G=}, are = hypotheses generated by the ASR
module for one speech. To decrease the embedded vocabulary size, the hypothesis is split to subword units
(byte of pairs or BPs) in ;1 by a byte pair encoder (Sennrich et al., 2015) and each BP is embedded to a
vector in ;2. Then, the BiLSTM encoder gets contextualized representations for the BPs (1?�8 ,1...1?�8 , 9)
of the hypothesis (�8) containing 9 byte pairs as follow:

(ℎ�8 ,1, ..., ℎ�8 , 9) ← �8!()"\ (1?�8 ,1, ..., 1?�8 , 9). (1)

Each hidden state is the concatenation of the forward and backward directions, e.g. [ℎ�8 ,1 5 , ℎ�8 ,11],
where 5 means forward and 1means backward. The finally utilized output state for�8 is the concatenation
of the last hidden state of the forward and backward LSTM, i.e. ℎ>DC ?DC8 = [ℎ�8 ,11, ℎ�8 , 9 5 ]. To integrate
the output states of all hypotheses, we follow the empirically best approach in Li et al. (2020), PoolingAvg,
which firstly pads into the output state of the first best hypothesis by = − A times when the amount of
hypotheses, A is smaller than =. Then, a unified representation ℎD=8 5 843 can be achieved by average
pooling (= by 1 sliding window and stride 1) for the = output states in layer ;4. In the PoolingAvg, the
unified representation is used to predict the domain or intent and all the parameters are trained by the
cross entropy loss for the classification task. While in our method, we introduce a new task and train
tasks simultaneously. Below, we discuss the task specific layers and the training objective.
Transcription Reconstruction (TR): For all the natural language understanding tasks, it is important

to obtain a high-quality unified representation of the incoming utterance. To assure the quality of ℎD=8 5 843 ,
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we consider the task to reconstruct transcription by an LSTM decoder adopting ℎD=8 5 843 as the initial state
of its first recurrent layer. Once the decoder’s output is close to transcription, it shows the representation
contains the high-quality information of transcription. The task is trained based on cross entropy loss:

L��−) ' =

|( |∑
1?=1

|+ |∑
4=1

H1?,4;>6(1/Ĥ1?,4). (2)

The ( is the transcription while the 1? represents the 1?Cℎ byte pair inside (. The 4 represents the 4Cℎ
byte pair in the vocabulary. Each time, H1?,4 is 1 when the 1?Cℎ byte pair is the 4Cℎ entry of vocabulary
and 0 otherwise. Ĥ1?,4 is the predicted probability that the 4Cℎ byte pair should appear at 1?Cℎ position.
With the transcription reconstruction, the model can learn some erroneous patterns between the = best
hypotheses and target transcriptions and recover accordingly. For example, one phrase may always be
mis-recognized as another phrase by an ASR module. During our evaluation, with a set of utterance
examples, we decode the hidden states and show the recovering capability.
Domain Classification (DC):With the same output hidden state, we could as well predict the domains

(e.g. music, weather or knowledge) by a multilayer perceptron (MLP) (Mather and Tso, 2016) module.
The loss for the DC task is:

L��−�� =

|� |∑
3=1

HD,3;>6(1/ĤD,3). (3)

The HD,3 is the indicator function which equals to 1 when the utterance belongs to the 3Cℎ domain of the
candidates set �. The ĤD,3 is the predicated probability, ĤD,3 = B> 5 C<0G( 5"!%−�� (ℎD=8 5 843)), where
the 5"!%−�� contains the parameters to be trained in DC task.

IntentClassification (IC):Then, we could further utilize ℎD=8 5 843 for domain-specific intent prediction
with another MLP module. For an incoming utterance, it is usually firstly classified to one domain and
the intent classification will be domain-specific (Tur and De Mori, 2011). The loss of the IC task is:

L��−�� =

|� |∑
8=1

HD,8;>6(1/ĤD,8), (4)

where the HD,8 is 1 when the utterance should be classified to the 8Cℎ intent. The ĤD,8 =

softmax( 5"!%−�� (ℎunified)), where ĤD,8 is the predicted probability of the utterance belonging to the
8Cℎ intent and 5"!%−�� contains the task-specific parameters.

Training Objective: For the PoolingAvg method, the objective is to minimize the L��−�� or
L��−�� , while for our MTL framework, the objective is minimizing

L = _) 'L��−) '/|( | + _��L��−�� + _��L��−�� , (5)

where the _) ', _�� and _�� are the weights of the loss functions associated with corresponding tasks.
Since for one utterance, the target transcription contains multiple words and the L��−) ' is the sum of
loss for all the words, we utilize the normalized version of the transcription reconstruction loss.
The Language Model: During our experiments, we also tried the multi-layer transformer (Vaswani et

al., 2017) for the encoder. We find it costs more for training or evaluationwhile bringing no improvements.
In addition, since the length of hypotheses varies, it is hard to align variant-length output states of different
=-best hypotheses and exploit the attention between encoder and decoder (if we also use the Transformer’s
decoder) for the TR task. Thus, we exploit the BiLSTM encoder and LSTM decoder.

2.3 Multi-task Training in Multiple Stages (MT_M) with Transfer Learning or Text Generation
Another way to train the above-mentioned tasks is in different stages as shown in the right part of Figure
2. Inasmuch as for all the NLU tasks, it is necessary to obtain a high-quality hypothesis representation.
We prioritize the training of TR in the first step and let all NLU models share the same pre-trained TR
model. The approaches of exploiting the pre-trained model are introduced as follows.
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Figure 3: Confidence score of
ASR 1-Best (bin size 10‰).
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Figure 4: Confidence score
difference (bin size 5‰).

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

O 1 2 3

Prob(ASR 1st is not the best)

Confidence Score Rel Diff (/5%)
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relative difference (bin size 5%)

Transfer Learning: One way to use the TR task from the first step is transfer learning, where we
regard the TR as the pre-training step and let the DC, IC tasks adapt the knowledge by fine-tuning. We call
the method following this idea as Transfer Learning (TL). The parameters of the pre-trained TR’s shared
layers, including the embedding of byte pairs and the BiLSTM encoder, are used as the initial value. The
TR task-specific parameters like the decoder part’s are discarded. Then, the shared layers’ parameters
and task-specific layer’s parameters, in 5"!%−�� or 5"!%−�� , are all trained during the fine-tuning step.
Although DC and IC share the same initialization parameters, their fine-tuned models are separate. The
benefit of the two-step training is that the model and knowledge from pre-training step can serve multiple
downstream tasks. In addition, with the well-initialized parameters, it saves much time for fine-tuning.
MT_M with Text Generation: Since the TR model has been tuned to recover the errors contained in

the ASR =-bests, we can firstly evaluate it to generate the text closer to transcription. Then, the domain
or intent can be predicted based on the generated text. This method is called Multi-task Multi-stage
with Text Generation (MMTG). At this moment, the input to DC or IC is only one generated hypothesis
instead of =-bests. To predict with one hypothesis, we can exploit the IC or DC models pre-trained on
transcription or 1-best, which only expect one sentence as the input.

2.4 Hierarchical Attention on Byte Pair Embedding and Hypothesis Integration Layer
All the above algorithms treat the input hypotheses as normal natural language to process but ignore
that the hypotheses are generated by ASR and associated with more acoustic-model information than
the text itself. For example, the position information (whether the hypothesis is the first best or the last
best), the difference of confidence score associated with the first best and second best hypothesis, etc.
The acoustic-model features have been proven to be valuable for many applications including: 1) the
arbitration task to select the best among client and service recognition results (Kumar et al., 2015), 2) the
Recognizer Output Voting Error Reduction (ROVER) (Fiscus, 1997), which takes the outputs generated
by multiple ASR systems to generate one output with reduced error rate, 3) confidence normalization
(Kumar et al., 2014), etc. In this section, we would like to introduce those features, why they can be
helpful, and how they can hierarchically take part in the shared layers in the left side of Figure 2.

2.4.1 Acoustic-model Information
Those features can be divided into three categories including confidence-score features, positional infor-
mation and confusibility. We illustrate their close relationship with the hypothesis quality as following.
(a) Confidence-score Features: The confidence scores quantitatively represent the correctness of

recognized hypotheses and words in a [0‰,1000‰] range. Plenty of previous research works have
proven the effectiveness of those features. Here, we take the confidence score of hypothesis as an example
to show the valuable information contained in confidence scores. For each utterance in the training set, we
evaluate the probability that ASR 1-best is not the best for different scales of the ASR 1-best confidence
score. A hypothesis is the best when it is the most similar one to the transcription considering the edit
distance. In Figure 3, it is obvious that a higher confidence score means a higher probability that the ASR
1-best is the best one among hypotheses.
(b) Positional Information: The ranking position of the hypothesis is another important information.

To show its significance, we gain the distribution of exact matchings, i.e. the hypothesis is the same as the
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transcription, between different ranking positions and the transcription. Among all the exact matching
cases, 50% appear at the first best hypothesis while 19%, 13%, 10% and 6% occur at the 2=3 , 3A3 , 4Cℎ,
and 5Cℎ best hypothesis. Hence, a more forward position does indicate a higher recognition quality.

(c) Confusibility: The features of the confusibility category include the difference (2>= 5 834=24�1 −
2>= 5 834=24�8

) and relative difference (38 5 5 4A4=24/2>= 5 834=24�1) of confidence score between the
ASR 1-best and the others. The larger difference implies the lower confusibility to choose the first
hypothesis as the best. As the confidence score of the first best should be larger or equal to the others, the
difference and relative difference are non-negative values measuring the degree of outperforming. In the
Figure 4 and 5, there is a trend that the larger difference (between ASR first and second best) implies the
lower probability that ASR 1-best is not the best, which means it is easier to determine the ASR 1-best as
the best. Here, we only show the difference to the second best as an example. While in later designs, the
features will be formed based on the difference between each 8-best’s confidence score and the 1-best’s.

2.4.2 Hierarchical Attention Mechanism (HAM)

We have shown that the acoustic-model information reveals the quality of recognition and to exploit them,
we add them into shared layers hierarchically. The HAM is proposed by the hierarchical structure of the
=-bests (BPs from a hypothesis, a hypothesis from =-bests). Similar hierarchical structures are realized
in different areas, where various kinds of information like documentation (Yang et al., 2016), knowledge
graphs (Hu et al., 2015), Internet network (Li et al., 2018), or voice queries (Rao et al., 2017) are encoded.
While integrating =-bests, the process is building representation for one hypothesis from BPs and then
aggregating them into an =-bests representation. We likewise exploit the acoustic-model information
hierarchically to BPs embedding (HAM_BP) and then to the aggregation of hypotheses (HAM_H). The
HAM_ALL exploits the information in both layers.

Byte Pair Embedding Layer (HAM_BP): In Figure 6 right side, we show the way of involving the
byte pair acoustic-model information in the byte pair embedding layer of Figure 2 left side. Instead of
concatenating the last hidden state of forward and backward LSTM for hypothesis embedding (Figure
6 left side), we would like to consider the quality of each byte pair and take into account the entire
sequence of hidden states. To exploit the information, we firstly need to figure out the problem of missing
acoustic-model information for byte pairs because we only have the confidence scores associated with
words. Since it can be ensured that each byte pair only belongs to one word, we can assign the confidence
score for a byte pair according to its parent, i.e. the word. For example, in Figure 6, the "low" and "-er"
are two byte pairs of the word "lower", so they share the same confidence score of the word "lower", i.e.
0.9. To use the confidence scores as attention scores, we can normalize them by Softmax or convert them
to bin value or logarithmic scale, etc (shown by 5 (G) in Figure 6). The attention score matrix is multiplied
with the hidden vectors matrix of the BiLSTM embedding, where each hidden vector concatenates its
forward and backward states. The mean (from pooling) of weighted hidden state vectors forms a single
vector for each hypothesis and the vector will participate in the following hypotheses integration layer.

Hypotheses Integration Layer (HAM_H): Figure 7 illustrates the integration of hypotheses with their
associated acoustic-model information. The left side of the dotted line in Figure 7 is the way to integrate
without the acoustic-model features in Figure 2 layer ;4, where hypotheses embeddings transferred from
the ;3 layer are combined by the pooling operation. The problem is that the normal pooling layer treats
hypotheses equally, although the quality of the =-best hypotheses actually varies. We add a Multiple
Layer Perceptron (MLP), i.e. Feedforward (FFW), to synthesize all the features revealing the quality
of each hypothesis, including the positional information, confidence score, confidence score difference
and confidence score relative difference. The output of FFW is normalized via Softmax and works as
the attention scores or weights. In MatMul, we multiply the attention score matrix and the hypothesis
embedding matrix. Finally, the weighted embeddings are combined through pooling.
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3 Experiments

3.1 Dataset and Models

Our data consists of ∼ 9M anonymized English utterances. The utterances are divided into training,
development and testing parts with 8:1:1 ratio. They are annotated with 23 domains and further classified
into different intents for each domain. The transcripts are hand-transcribed by humans.

The compared approaches include the Baseline model and Oracle model mentioned in Sec. 2.1,
PoolingAvg, Oracle of Reranking Model and the approaches mentioned in this paper. The PoolingAvg
is the foremost one among all the models integrating =-best hypotheses (Li et al., 2020). The Oracle of
Reranking Model makes prediction by the hypothesis most similar to the transcription each time. As for
the models in this paper, they include the multi-task training in a single stage (MTL, Sec. 2.2), or in
different stages (TL and MMTG, Sec. 2.3) and the HAM (Sec. 2.4). The HAM actually modifies the
shared layers and is not task-specific, so it is possible to combine it with the MTL or transfer learning
mechanism. For example, MTL��" means using HAM to modify shared layers and training with mode
of MTL. For all the models, the byte pairs are embedded to a 128-dimensional space. The hidden states
in the BiLSTM encoder of the shared layers and the LSTM decoder of task TR are both 512-dimensional.
The training iterator is a fixed mini-batch iterator with size 128 and each model is trained for ten epochs,
while the model providing the highest performance for the development data is selected.
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3.2 Domain Classification

Entire test set Agree Part Disagree Part
Category Model RErr(%) RErr(%) RErr(%)
Standard Baseline 0.00 0.00 0.00
Rerank Oracle 3.71 0.00 7.25

Integration PoolingAvg 14.29 3.56 24.67
MT_S MTL 17.99 7.67 28.26

MT_M TL 17.34 7.32 27.37
MMTG 9.16 1.88 16.20

HAM
MTL��"_� 18.10 7.88 28.22
MTL��"_�% 18.10 8.07 28.05
MTL��"_�!! 19.30 9.94 28.68

Oracle 27.04 0.00 53.02

Table 1: Relative error reduction (RErr) for domain classification.

Table 1 compares the domain classification performance of all the models. As seen from the results
of the entire test set, the transfer learning, multi-task learning and the improved versions with HAM
are all better than the existing methods. Among the ways of training multiple tasks synchronously or
asychronously, the MTL works the best. In our experiments, we have tried different hyperparametric
values in formula 5. Since the predictions of IC is based on the specific domain predicted in DC, we
only have two tasks (DC, TR) and associated hyperparametrics (_�� , _) ') for MTL in the domain
classification. We tried ratios of _) ' : _�� with 1 : 8, 8 ∈ 1...10. Here, we assign the weight for DC as
a larger one because we care more about the DC task performance, while the TR is actually an auxillary
task. Through experiments, we find the performance for ratio 1 : 8, 8 ∈ 1...3 is comparable to each other
and better than the rests and we show the results for ratio 1 : 1 in Table 1. With the acoustic-model
information, the performance of MTL is further improved. Exploiting the acoustic-model information
hierarchically on both hypotheses and byte pairs layers, i.e. HAM_ALL, is better than on one layer
(HAM_H, HAM_BP).
To reveal the reason of improvements, we split the entire test set into two parts by whether the 1-bests

agree with transcriptions or not and evaluate respectively. Comparing the Agree and Disagree part, we
find that the gained improvements of models in MTL, TL and MTL with HAM mainly come from the
disagreed part. This indicates that integrating more hypotheses could help more when 1-best differs from
transcription. Later, we will illustrate the reasons more visually with some utterance examples.

3.3 Real Effect of MTL: Analysis of Utterance Examples

Domain Estimation Result Generated Text (decoded hidden representation), ASR =-bests and transcription
Baseline MTL Real Transcription Generated Text by MTL ASR-1BC ASR-2=3 ASR-3A3
Daily Music Music play muse play muse play news play muse play mus

Knowledge Video Video harry porter harry porter how do
you porter

how do
you patter harry power

Communication Help Help how the call
service work

how the remote
service work

how the call
service work

how the cost
service work None

Table 2: Comparison among the decoded hidden representations, hypotheses and transcriptions.
We use the well-trained MTL on some utterance examples to predict their domains and decode the

integrated hypotheses embedding (hidden representations) with Beam Search Decoder (beam size 1) to
compare the generated text with the ASR hypotheses, transcription. In Table 2, the first three columns
are the predicted domains of Baseline model , MTL model (predicted by the hidden representation) and
the Real domain. The other columns compare the transcriptions, the decoder’s generated text in MTL
and the =-bests. Due to space limit, we only choose three typical example with their top 3 hypotheses.
The number of hypotheses varies, so we use None for the missing one.
Why are we better than Baseline on Disagree Part? The reasons MTL can outperform the Baseline

model’s prediction on Disagree Part can be categorized into two as follows. 1) Choose the best from
ASR 2-= bests (e.g. the third row in Table 2): In this condition, there is a high-quality hypothesis ("play
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Domain Shopping Knowledge Comm
Baseline 0.0 0.0 0.0
Oracle 47.63 40.28 32.89

PoolingAvg 25.55 25.00 11.92
MTL 35.02 36.11 12.36

MTL��"_�!! 36.91 30.56 12.58

Table 3: Intent classification: rela-
tive error reduction versus Baseline.

muse") within the =-bests. The position of the hypothesis is not the first one but we can correctly identify
it in the generated text. 2) Integrate fragmented information (e.g. the forth row in Table 2): In this
condition, the transcription "harry porter" spread out over hypotheses. The "harry" is in the third best
while the "porter" is in the first best. We can collect the information and recover the "harry porter" in the
generated text. The ability of integration can thus been shown. The ability can be obtained by learning
the error patterns between ASR hypotheses and transcriptions during the TR task.
Why are we even better than Baseline on Agree Part? The transcriptions should be the golden

information but we can still outperform the Baseline’s prediction from ASR 1-best when ASR 1-best
agrees with the transcription. The reason is Query rewriting (e.g. the fifth row): We find the trained
model attempt to rewrite transcription when it may cause misunderstanding. In the fifth row, while the
transcription is "how the call service work", the trained model replaces the sensitive word "call" with
another word "remote" with similar meaning or embedding position. The word "call" is a sensitive word
because it always occurs in the Communication domain, which can make the predictor mis-classify it.
However, the word "remote" is not sensitive but semantically similar to the word "call". This example is
also a perfect demo to show the effect of multi-task learning. The multi-task learning here is to find the
balance point between the domain classification and transcription reconstruction. Considering both tasks
will propel the model to rewrite a query with a similar semantic meaning and avoid misunderstanding.
We summarize the different causes of improvements by some utterance examples here to offer an

insight of the model’s real effect. However, we do not show the numerical analysis like WER because it
is hard to evaluate whether the decode generation is high-quality considering the query rewriting.

3.4 Improvements on Different Domains and Different Numbers of Hypotheses

Now, we compare more specifically the MTL, MTL��"_�!! and PoolingAvg on 8 important domains
out of the whole 23 domains in Figure 8. The performance of each of the three models will be compared
to the baseline model and the relative error reduction (RErr) is shown. This result shows that the MTL
gains more improvements than the best integration model PoolingAvg for all the 8 domains while the
HAM can enhance the performance on almost all 8 domains (except an acceptable decay for Shopping).
All the previous results of models based on =-best actually utilize 5-best hypotheses and we also want

to see the performance with different number of hypotheses. In Figure 9, we could find the best model
is always MTL��"_�!! for different numbers of utilized hypotheses. There is also a trend that after
4 hypotheses are utilized the growth become more gentle. The lines for Baseline and UpperBound are
flatten because they are only based on ASR 1-bests and transcriptions. We only show the performance
until 5 hypotheses are utilized because: 1) Most of our ASR recognition results only contain at most
5-bests; 2) In production, the more hypotheses are utilized, the slower it will be for training and testing.
We only want to afford up to 5 hypotheses considering response delay.

3.5 Intent Classification on Three Important Domains

Another task, intent classification, is domain specific and we show the IC of 3 important domains. Table
3 shows the relative error reduction compared to Baseline model. The multi-task learning for intent
classification considers both the intent classification and transcription reconstruction. The result showed
is under the loss ratio _) ' : _�� = 1:1 for the two tasks. We can find the MTL��"_�!! and MTL
outperforms the foremost PoolingAvg for all three domains’ domain-specific intent classification.
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4 Conclusion and Future Work

This work is motivated by introducing multi-task learning (MTL), transfer learning (TL) and acoustic-
model information into the framework of integrating =-best hypotheses for spoken language understanding.
Among those algorithms, we find the MTL results in higher performance compared to the TL. For the
acoustic-model information, we illustrate their close relationship with the hypothesis quality and utilize
the hierarchical attention mechanism to include the information for byte pair embedding and hypothesis
integration layer within the shared layers, which can further enhance theMTL. The relative error reduction
is 19.3% for domain classification and 36.9% for intent classification. We also use some utterances to
analyze the real cause of the improvements. By decoding the hidden representations and comparing with
transcription, we find by the MTL, the model attempts to find a balance point and do some reasonable
query rewriting. In the future, we will explore more by introducing more tasks, improving the efficiency
and utilizing more abundant information like word lattice.
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