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Abstract
A large array of pretrained models are avail-
able to the biomedical NLP (BioNLP) com-
munity. Finding the best model for a partic-
ular task can be difficult and time-consuming.
For many applications in the biomedical and
clinical domains, it is crucial that models can
be built quickly and are highly accurate. We
present a large-scale study across 18 estab-
lished biomedical and clinical NLP tasks to de-
termine which of several popular open-source
biomedical and clinical NLP models work
well in different settings. Furthermore, we ap-
ply recent advances in pretraining to train new
biomedical language models, and carefully in-
vestigate the effect of various design choices
on downstream performance. Our best mod-
els perform well in all of our benchmarks, and
set new State-of-the-Art in 9 tasks. We release
these models in the hope that they can help the
community to speed up and increase the accu-
racy of BioNLP and text mining applications.

1 Introduction
The pretrain-and-finetune approach has become the
dominant paradigm for NLP applications in the last
few years (Peters et al., 2018; Devlin et al., 2019;
Yang et al., 2019; Conneau et al., 2020, inter alia.),
bringing significant performance gains in many
areas of NLP. Models trained on Wikipedia and
WebText (Radford et al., 2019) generally perform
well on a variety of target domains, but various
works have noted that pretraining on in-domain
text is an effective method for boosting downstream
performance further (Peters et al., 2018; Beltagy
et al., 2019; Li et al., 2019; Gururangan et al.,
2020). Several pretrained models are available
specifically in the domain of biomedical and clini-
cal NLP driving forward the state of the art includ-
ing BioBERT (Lee et al., 2019), SciBERT (Beltagy
et al., 2019), ClinicalBERT (Alsentzer et al., 2019)
and BioMedRoBERTa (Gururangan et al., 2020).

While it is great to have multiple options, it can
be difficult to make sense of what model to use
in what case — different models are often com-
pared on different tasks. To further complicate mat-
ters, more powerful general-purpose models are
being released continuously. It is unclear whether
it is better to use a more powerful general-purpose
model like RoBERTa, or a domain-specific model
derived from an earlier model such as BioBERT.
And given the opportunity to pretrain a new model,
it is unclear what are the best practices to do that
efficiently.

Our goal is to understand better the landscape of
pretrained biomedical and clinical NLP models. To
that effect, we perform a large-scale study across
18 established biomedical and clinical NLP tasks.
We evaluate four popular bioNLP models using
the same experimental setup. We compare them to
general purpose RoBERTa checkpoints. We find
that BioBERT performs best overall on biomedi-
cal tasks, but the general-purpose RoBERTA-large
model performs best on clinical tasks. We then
take advantage of recent advances in pretraining by
adapting RoBERTa (Liu et al., 2019) to biomedi-
cal and clinical text. We investigate what choices
are important in pretraining for strong downstream
bioNLP performance, including model size, vo-
cabulary/tokenization choices and training corpora.
Our best models perform well across all of the
tasks, establishing a new state of the art on 9 tasks.
Finally, we apply knowledge distillation to train a
smaller model that outperforms all other models
with similar computational requirements. We will
release our pretrained models and the code used to
run our experiments.1

1Models and code are available at https://github.
com/facebookresearch/bio-lm

https://github.com/facebookresearch/bio-lm
https://github.com/facebookresearch/bio-lm
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2 Tasks and Datasets

We select a broad range of datasets to cover
both scientific and clinical textual domains, and
common modelling tasks – namely i) Sequence
labelling tasks, covering Named Entity Recog-
nition (NER) and de-identification (De-id) and
ii) Classification tasks, covering relation extrac-
tion, multi-class and multi-label classification and
Natural Language Inference (NLI)-style tasks.
These tasks were also selected to optimize over-
lap with previous work in the space, drawing tasks
from the BLUE benchmark (Peng et al., 2019),
BioBERT (Lee et al., 2019), SciBERT (Beltagy
et al., 2019) and ClinicalBERT (Alsentzer et al.,
2019). The tasks are summarized in Table 1 and
described in the following subsections.

2.1 Sequence Labelling Tasks
BC5-CDR (Li et al., 2016) is an NER task re-
quiring the identification of Chemical and Disease
concepts from 1,500 PubMed articles. There are
5,203 and 4,182 training instances for chemicals
and diseases respectively.

JNLPBA (Collier and Kim, 2004) is an NER
task requiring the identification of entities of inter-
est in micro-biology, with 2,000 training PubMed
abstracts.

NCBI-Disease (Doğan et al., 2014) requires
identification of disease mentions in PubMed ab-
stracts. There are 6,892 annotations from 793 ab-
stracts.

BC4CHEMD (Krallinger et al., 2015) requires
the identification of chemical and drug mentions
from PubMed abstracts. There are 84,310 annota-
tions from 10,000 abstracts.

BC2GM (Smith et al., 2008) requires the identi-
fication of 24,583 protein and gene mentions from
20,000 sentences from PubMed.

LINNAEUS (Gerner et al., 2010) is a collection
of 4,077 species annotations from 153 PubMed
articles.

Species-800 (Pafilis et al., 2013) is a collection
3,708 species annotations in 800 PubMed abstracts.

I2B2-2010/VA (Uzuner et al., 2011) is made up
of 871 de-identified clinical reports. The task re-
quires labelling a variety of medical concepts in
clinical text.

I2B2-2012 (Sun et al., 2013b,a) is made up
of 310 de-identified clinical discharge summaries.
The task requires the identification of temporal
events within these summaries.

I2B2-2014 (Stubbs and Uzuner, 2015; Stubbs
et al., 2015) is made up of 1,304 de-identified lon-
gitudinal medical records. The task requires the
labelling of spans of text of private health informa-
tion.

2.2 Classification Tasks

HOC (Baker et al., 2016) is a multi-label classi-
fication task requiring the classification of cancer
concepts for PubMed Articles. We follow (Peng
et al., 2019) and report abstract-level F1 score.

MedNLI (Romanov and Shivade, 2018) is a 3-
class NLI dataset built from 14K pairs of sentences
in the clinical domain.

ChemProt (Krallinger et al., 2017) requires clas-
sifying chemical-protein interactions from 1,820
PubMed articles. We follow the standard practice
of evaluating over the 5 most common classes.

GAD (Bravo et al., 2015) is a binary relation ex-
traction task for 5330 annotated gene-disease inter-
actions from PubMed. We use the cross-validation
splits from Lee et al. (2019).

EU-ADR (van Mulligen et al., 2012) is a small
data binary relation extraction task with 355 an-
notated gene-disease interactions from PubMed.
We use the cross-validation splits from Lee et al.
(2019).

DDI-2013 (Herrero-Zazo et al., 2013) is a rela-
tion extraction task requiring recognition of drug-
drug interactions. There are 4 classes to extract
from 4920 sentences from PubMed, as well as
many sentences which do not contain relations.

I2B2-2010-RE (Uzuner et al., 2011) in this set-
ting of I2B2-2010, we focus on the relation extrac-
tion task to detect 8 clinical events.

3 Pretraining Corpora

There is a wide range of text corpora in the biomed-
ical and clinical domains. We limit our options to
data that is freely available to the public so that
models can be open-sourced.
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Task Name Domain Task Metric Task Name Domain Task Metric

BC5-CDR-Chemical PubMed N.E.R. F1 I2B2-2012 Clinical N.E.R. F1
BC5-CDR-Disease PubMed N.E.R. F1 I2B2-2014 Clinical De-ID F1
JNLPBA PubMed N.E.R. F1 HOC PubMed Multi-label classif. Macro-F1
NCBI-D PubMed N.E.R. F1 ChemProt PubMed Rel. extract. Macro-F1
BC4CHEMD PubMed N.E.R. F1 GAD PubMed Binary Rel. Extract. F1
BC2GM PubMed N.E.R. F1 EU-ADR PubMed Binary Rel. Extract. F1
LINNEAEUS PubMed N.E.R. F1 DDI-2013 PubMed Rel. Extract. Micro-F1
Species-800 PubMed N.E.R. F1 I2B2-2010-RE Clinical Rel. extract. F1
I2B2-2010 Clinical N.E.R. F1 MedNLI Clinical NLI Acc

Table 1: Summary of our considered tasks

PubMed abstracts PubMed2 is a free resource
containing over 30 million citations and abstracts
of biomedical literature. PubMed abstracts are a
popular choice for pretraining biomedical language
models (Lee et al., 2019; Peng et al., 2020) because
of the collection’s large size and broad coverage.
Following past work, we obtained all PubMed ab-
stracts published as of March 2020. After removing
empty abstracts we retained 27GB of text from 22
million abstracts, consisting of approximately 4.2
billion words.

PubMed Central full-text PubMed Central3

(PMC) is an open access collection of over 5 mil-
lion full-text articles from biomedical and life sci-
ence research, which has been used in past scien-
tific language modeling work (Beltagy et al., 2019).
Following past work, we obtained all PubMed Cen-
tral full-text articles published as of March 2020.
We use the pubmed parser package4 to extract
plain text from each article. After removing empty
paragraphs and articles with parsing failures we
retained 60GB of text from 3.4 million articles,
consisting of approximately 9.6 billion words.

MIMIC-III The Medical Information Mart for
Intensive Care, third update (MIMIC-III) consists
of deidentified clinical data from approximately
60k intensive care unit admissions. Following re-
lated work (Zhu et al., 2018; Peng et al., 2019), we
extract all physician notes resulting in 3.3GB of
text and approximately 0.5 billion words.

Other corpora Other authors have used subsets
of papers on Semantic Scholar (Gururangan et al.,
2020; Ammar et al., 2018), but these corpora are
not generally publicly available. The CORD-19
dataset (Wang et al., 2020) is a publicly-available

2https://pubmed.ncbi.nlm.nih.gov
3https://www.ncbi.nlm.nih.gov/pmc
4https://github.com/titipata/pubmed_

parser

corpus of articles focusing on COVID-19, but is
largely subsumed by PMC, so we do not directly
include it in our work.

4 Pretrained Models

We compare five publicly-available language mod-
els which together form a representative picture of
the state-of-the-art in biomedical and clinical NLP.
We use the HuggingFace Transformers library to
access the model checkpoints (Wolf et al., 2019).

SciBERT (Beltagy et al., 2019) is a masked
language model (MLM) pretrained from scratch
on a corpus of 1.14M papers from Semantic
Scholar (Ammar et al., 2018), of which 82% are in
the biomedical domain. SciBERT uses a special-
ized vocabulary built using Sentence-Piece (Sen-
nrich et al., 2016; Kudo, 2018)5 on their pretraining
corpus. We use the uncased SciBERT variant.

BioBERT (Lee et al., 2019) is based on the
BERT-base model (Devlin et al., 2019), with addi-
tional pretraining in the biomedical domain. We
use BioBERT-v1.1. This model was was trained for
200K steps on PubMed and PMC for 270K steps,
followed by an additional 1M steps of training on
PubMed, using the same hyperparameter settings
as BERT-base.

ClinicalBERT (Alsentzer et al., 2019) is also
based on BERT-base, but with a focus on clinical
tasks. We use the “Bio+Clinical BERT” check-
point, which is initialized from BioBERT, and then
trained using texts from MIMIC-III for 150K steps
using a batch size of 32.

RoBERTa (Liu et al., 2019) is a state-of-the-
art general purpose model. We experiment with
RoBERTa-base and RoBERTa-large to understand

5https://github.com/google/
sentencepiece

https://pubmed.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov/pmc
https://github.com/titipata/pubmed_parser
https://github.com/titipata/pubmed_parser
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
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how general domain models perform on biomedi-
cal tasks. Both models are pretrained with much
larger batch sizes than BERT, and use dynamic
masking strategies to prevent the model from over-
memorization of the training corpus. RoBERTa
outperforms BERT on general-domain tasks (Liu
et al., 2019).

BioMed-RoBERTa (Gururangan et al., 2020) is
a recent model based on RoBERTa-base. BioMed-
RoBERTa is initialized from RoBERTa-base, with
an additional pretraining of 12.5K steps with a
batch size of 2048, using a corpus of 2.7M scien-
tific papers from Semantic Scholar (Ammar et al.,
2018).

4.1 Pretraining New Models

In addition to these publicly available models, we
also pretrain new models on the corpora in Sec-
tion 3 and examine which design criteria are im-
portant for strong downstream performance on Bio-
NLP tasks. We have three criteria we are interested
in studying: i) The effect of model size on down-
stream performance; ii) the effect of pretraining cor-
pus on downstream performance; and, iii) whether
tokenizing with a domain-specific vocabulary has
a strong effect on downstream performance.

We pretrain a variety of models based on the
RoBERTa-base and RoBERTa-large architectures,
with detailed ablations discussed in section 6.1.
We use the PubMed data, and optionally include
MIMIC-III. We initialize our models with the
RoBERTa checkpoints, except when we use a
domain-specific vocabulary, then we retrain the
model from a random initialization. Our domain-
specific vocabulary is a byte-level byte-pair en-
coding (BPE) dictionary learned over our PubMed
pretraining corpus (Radford et al., 2019; Sennrich
et al., 2016). Both the general-purpose (RoBERTa)
and domain-specific vocabularies contain 50k sub-
word units. Our best performing models use
PubMed abstracts, PMC and MIMIC-III pretrain-
ing and a domain-specific vocabulary, and are re-
ferred to as “ours-base” and “ours-large” in the
following sections.

5 Experimental Setup

5.1 Pretraining

We largely follow the pretraining methodology
of Liu et al. (2019). We pretrain models using
FAIRSEQ (Ott et al., 2019) on input sequences of

512 tokens, of which 15% are masked and later
predicted.6 We pretrain with batches of 8,192 se-
quences and use the AdamW optimizer (Loshchilov
and Hutter, 2019) with �1 = 0.9,�2 = 0.98, ✏ =
1e � 6. We regularize the model with dropout
(p = 0.1) and weight decay (� = 0.01). We pre-
train all models for 500k steps using mixed pre-
cision on V100 GPUs. We linearly warmup the
learning for the first 5% of steps and linearly decay
the learning rate to 0 over the remaining steps. We
use a learning rate of 6e-4 for base models and 4e-4
for large models.

5.2 Fine-tuning

We fine-tune models using 5 different seeds and
report the median result on the test sets.

For sequence labelling tasks, we use learning
rate of 1e-5 and a batch size of 32. For all sequence
labelling tasks, we train for 20 epochs in total and
choose the best checkpoint based on validation set
performance (evaluating every 500 optimization
steps). We fine-tuned the models with 5 seeds and
report the median test results across these seeds.

For classification tasks, we use a learning rate of
0.002 and a batch size of 16. For HOC, ChemProt,
MedNLI and I2B2-2010-RE, we run for a maxi-
mum of 10 epochs, and perform early stopping,
evaluating performance on validation data every
200 optimization steps. As GAD and EU-ADR are
split into 10 train/test cross-validation partitions,
we choose early-stopping hyperparameters using
one fold, and report the median test results on the
other 9 folds.

6 Results

Table 2 shows our main results. The first columns
show results for the general-purpose RoBERTa-
base checkpoint, the next four show results for
the specialized models mentioned in Section 4.
The Roberta-large column shows results for the
general-purpose RoBERTa-large checkpoint. The
“ours-base” and “ours-large” columns refers to
our proposed RoBERTa-base and RoBERTa-large
sized models respectively, which were trained us-
ing PubMed and MIMIC-III data and a domain-
specific vocabulary. We observe the following: i)
RoBERTa-large outperforms RoBERTa-base con-
sistently, despite having access to the same training

6Following Devlin et al. (2019) and Liu et al. (2019), with
10% probability we randomly unmask a masked token or
replace it with a random token.
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Task Name RoBERTa-
base SciBERT BioBERT Clinical-

BERT
BioMed-
RoBERTa

Ours-
base

RoBERTa-
large

Ours-
large

BC5CDR-C. 87.3 91.9 91.9 90.6 90.3 92.9 90.8 93.7
BC5CDR-D. 77.6 83.6 83.3 81.3 80.6 83.8 82.3 85.2
JNLPBA 79.5 80.3 80.4 79.3 80.2 80.6 80.1 81.0
NCBI-disease 84.7 86.9 87.6 86.1 86.1 87.7 87.1 89.0
BC4CHEMD 88.6 91.8 92.2 90.3 89.7 92.7 90.6 93.7
BC2GM 82.7 85.7 85.6 83.9 84.2 87.0 85.3 88.0
LINNEAEUS 79.8 84.1 86.2 84.8 84.2 85.3 87.8 88.4
Species-800 75.8 77.8 79.2 77.4 77.3 79.6 78.3 81.1
I2B2-2010 83.5 86.3 86.0 86.3 85.0 88.1 87.3 89.7
I2B2-2012 74.9 77.6 77.6 78.0 76.4 79.5 78.3 80.8
I2B2-2014 95.6 95.2 94.7 94.6 95.2 95.5 95.8 96.3

HOC 86.0 84.7 86.6 86.2 86.7 86.5 85.2 86.6
ChemProt 69.6 69.7 73.9 68.5 75.7 75.4 71.7 76.2
GAD 79.4 78.7 81.2 79.2 81.6 82.2 73.4 81.1
EU-ADR 85.0 85.5 85.0 85.1 85.0 85.0 85.0 85.0
DDI-2013 79.0 79.1 79.9 77.3 80.7 81.0 80.5 82.1
I2B2-2010-RE 72.4 69.8 74.4 74.0 75.0 75.0 75.2 78.6
MedNLI 81.4 79.7 82.5 81.8 85.1 87.1 83.3 88.5

Mean (Seq. Lab.) 82.7 85.6 85.9 84.8 84.5 86.6 85.8 87.9
Mean (Classif.) 79.0 78.2 80.5 78.9 81.4 81.7 79.2 82.6
Mean (PubMed) 81.1 83.1 84.1 82.3 83.3 84.6 82.9 85.5
Mean (Clinical) 81.6 81.7 83.0 82.9 83.3 85.1 84.0 86.8

Mean (all) 81.3 82.7 83.8 82.5 83.3 84.7 83.2 85.8

Table 2: Test results on all tasks for our RoBERTa baselines, publicly available models and our best Large and
Base-sized models. All results are the median of 5 runs with different seeds

corpora; ii) We find that BioBERT performs best
from the publicly available models that we exper-
iment with; and iii) our newly introduced models
perform well, achieving the best results for 17 out
of the 18 tasks in our experiments, often by a large
margin. The exception is EU-ADR, which has a
small test set where all models achieve essentially
the same classification accuracy.

Digging deeper, we note that standard RoBERTa-
large is competitive with the four specialized mod-
els on sequence labelling tasks (85.8 vs 85.9) and
outperforms them on clinical tasks (84.0 vs 83.3),
despite having no specialized biomedical or clin-
ical pretraining. This suggests that larger, more
powerful general-purpose models could be a good
default choice compared to smaller, less powerful
domain-specific models.

Nevertheless, applying domain-specific training
to otherwise-comparable models results in signif-
icant performance gains in our experiments, as
shown by comparing ours-base and ours-large to
RoBERTa-base and RoBERTa-large in Table 2,
(+3.5% and +2.6% mean improvement), consis-
tent with findings from previous work (Gururangan
et al., 2020).

6.1 Ablations

The “ours-base” and “ours-large” models shown in
Table 2 refer to the best language models that we
trained in our experiments described in Section 4.1.
These models use the RoBERTa architectures, are
initialized with random weights, use a BPE vocab-
ulary learnt from PubMed, and are pretrained on
both our PubMed and MIMIC-III corpora. We per-
formed a detailed ablation study to arrive at these
models, and in what follows, we analyse the design
decisions in detail. A summary of these results
are shown in Table 3, a description of task group-
ings in Table 4, and full results can be found in
Appendix A.2.

6.1.1 Effect of vocabulary
The effect of learning a dedicated biomedical vo-
cabulary for base and large models can be analysed
by comparing row 2 to row 3, row 4 to 5, and
row 7 to 8 in Table 3. A dedicated vocabulary
consistently improves sequence labelling tasks, im-
proving results for base models by 0.7% and our
large model by 0.6% on average. The difference
is less consistent for classification tasks, improv-
ing the large model by 0.5%, but reducing perfor-
mance on the small model by 0.7%. A specialized
domain-specific vocabulary was also shown to be
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Model
Mean Clin-

ical
Pub-
Med

Seq.
Lab. Classif. All

(1) RoBERTa-base 81.6 81.1 82.7 79.0 81.3
(2) +PM 83.5 84.1 85.7 81.1 83.9
(3) +PM+Voc. 83.4 84.4 86.5 80.4 84.1
(4) +PM+M3 85.0 84.0 85.9 81.6 84.2
(5) +PM+M3+Voc. 85.1 84.6 86.6 81.8 84.7

(6) RoBERTa-large 84.0 82.9 85.8 79.2 83.2
(7) +PM+M3 85.7 85.1 87.3 82.1 85.3
(8) +PM+M3+Voc. 86.8 85.5 87.9 82.6 85.8

Table 3: Ablation test set results. Rows 5 and 8 cor-
respond to “ours-base”’ and “ours-large” in Table 2
respectively. Bold indicates the best model overall,
Underlined indicates the best base model. “PM” in-
dicates training with PubMed and PMC corpora and
“M3” refers to the MIMIC-III corpus. “Voc” indicates
using a dedicated biomedical vocabulary. Details of the
tasks incuded in each column are given in Table 4

Task group Tasks in group

Clinical I2B2-2010, I2B2-2012, I2B2-2014, I2B2-2010-
RE, MedNLI

PubMed
BC5CDR-C, BC5CDR-D, JNLPBA, NCBI-D,
BC4CHEMD, BC2GM, Linneaus, Species-800,
HOC, ChemProt, GAD, EU-ADR, DDI-2013

Seq. Lab.
BC5CDR-C, BC5CDR-D, JNLPBA, NCBI-D,
BC4CHEMD, BC2GM, Linneaus, Species-800,
I2B2-2010, I2B2-2012, I2B2-2014

Classif. HOC, ChemProt, GAD, EU-ADR, DDI-2013,
I2B2-2010-RE, MedNLI

Table 4: High-level task groupings. “Clinical” indi-
cates clinical tasks, “PubMed” indicates tasks based on
PubMed, “Seq. Lab.” refers to sequence labelling, i.e.
N.E.R. and De-ID. “Classif.” refers to classification, i.e.
relation extraction, multi-label classification and NLI.

useful in Beltagy et al. (2019). Since our special-
ized vocabulary models are trained from scratch
only on biomedical data, we see that Wikipedia and
WebText (Radford et al., 2019) pretraining is not
necessary for strong performance.

6.1.2 Effect of training corpora

Table 3 also shows the results of text corpora.
Rows 1 and 2 show that, unsurprisingly, includ-
ing PubMed pretraining improves results over a
RoBERTa-only model, by 2.6%. Comparing row
2 to row 4 and row 3 to 5 shows that including
MIMIC-III in pretraining results in a large improve-
ment on clinical tasks over PubMed-only models
(+1.5% and +1.7%) but has little effect on PubMed-
based tasks (-0.1% and +0.1%).

6.1.3 Effect of model size
Consistent with findings from the recent litera-
ture (Devlin et al., 2019; Liu et al., 2019; Rad-
ford et al., 2019; Brown et al., 2020), we find that
large models perform consistently better than com-
parable smaller ones. Comparing row 1 to row
6, row 4 to 7, and row 5 to 8 in Table 3 shows
average improvements of 2%, 1.6% and 0.9% re-
spectively. These improvements are mostly driven
by improved sequence labelling performance for
large models.

6.2 Comparisons to the state-of-the-art
The focus of this paper was not to set the state-of-
the-art on specific downstream tasks, but rather to
evaluate which models consistently perform well.
As such, we prioritized consistent hyperparameter
search and did not consider task-specific tuning.
Nevertheless, the models that we trained compare
favorably to the state-of-the-art. Table 5 shows
the best results obtained for each task in our ex-
periments. In some cases, models used in our ex-
periments have been reported with higher results
in the literature. We attribute such difference to
variance in test performance, small differences in
pre-processing and differing levels of hyperparame-
ter optimization and tuning. We control for test-set
variance by running each model 5 times with dif-
ferent random seeds and reporting median results.
We also use standard hyperparameter settings as
reported in the literature. Table 5 compares our
results to numbers reported in the literature. The
best model in our experiments sets a new State-of-
the-Art in 9 out of 18 tasks, and comes within 0.1%
of the best reported result in another 3 tasks.

7 Distillation

In Section 6.1.3, we noted that larger models re-
sult in better accuracy. However, they also require
more computational resources to run, limiting their
applicability. Recent work addresses this issue by
distilling larger models into smaller ones while re-
taining performance. Next, we investigate whether
distillation works well in the BioNLP space.

7.1 Distillation Technique
Knowledge distillation (Hinton et al., 2015) aims to
transfer the performance from a more accurate and
computationally expensive teacher model into a
more efficient student model. Typically, the student
network is trained to mimic the output distribution
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Task Name State-of-the-Art Our
best Task Name State-of-the-Art Our

bestMethod Score Method Score

BC5CDR-C. Lee et al. (2019) 93.5 93.7 I2B2-2012 Si et al. (2019) 80.9 80.8
BC5CDR-D. Lee et al. (2019) 87.2 85.2 I2B2-2014 Lee et al. (2019) 93.0 96.3
JNLPBA Yoon et al. (2019) 78.6 81.0 HOC Peng et al. (2019) 87.3 87.2*
NCBI-disease Lee et al. (2019) 89.4 89.0 ChemProt Lee et al. (2019) 76.5 76.4*
BC4CHEMD Lee et al. (2019) 92.4 93.7 GAD Bhasuran et al. (2018) 83.9 82.2‡

BC2GM Lee et al. (2019) 84.7 88.0 EU-ADR Lee et al. (2019) 86.5 85.5†

LINNEAEUS Giorgi and Bader (2018) 93.5 88.4 DDI-2013 Peng et al. (2020) 81.0 82.1‡

Species-800 Lee et al. (2019) 75.3 81.1 I2B2-2010-RE Peng et al. (2019) 76.4 78.6
I2B2-2010 Si et al. (2019) 90.3 89.7 MedNLI Peng et al. (2020) 84.2 88.5

Table 5: Our best models compared to best reported results in the literature. The best model in our experiments
unless otherwise stated is RoBERTa-large with PubMed, MIMIC-III and specialized vocabulary (“ours-large” in
Table 2). Other models are indicated by: (*) RoBERTa-large + PubMed + MIMIC-III; (†) SciBERT; (‡) RoBERTa-
base + PubMed + MIMIC-III + vocab.

or internal activations of the teacher network, while
keeping the teacher network’s weights fixed.

In NLP, prior work has exploring distilling larger
BERT-like models into smaller ones. Most of this
work trains the student network to mimic a teacher
that has already been finetuned for a specific task,
i.e., task-specific distillation (Tsai et al., 2019; Turc
et al., 2019; Sun et al., 2020). Recently, Sanh
et al. (2020) showed that it is also possible to dis-
till BERT-like models in a task-agnostic way by
training the student to mimic the teacher’s outputs
and activations on the pretraining objective, i.e.,
masked language modeling (MLM). Task-agnostic
distillation is appealing because it enables the dis-
tilled student model to be applied to a variety of
downstream tasks. Accordingly, we primarily ex-
plore task-agnostic distillation in this work.

Recent work has also shown the importance of
student network initialization. For example, Sanh
et al. (2020) find that initializing the student net-
work with a subset of layers from the teacher net-
work outperforms random initialization; unfortu-
nately this approach constrains the student network
to the same embedding and hidden dimension as
the teacher. Turc et al. (2019) instead advocate
initializing the student model via standard MLM
pretraining, finding that it outperforms the layer
subset approach. Unfortunately, they only consider
task-specific distillation, where the teacher network
has already been finetuned to the end task, reducing
the generality of the resulting student network.

We combine the approaches from Sanh et al.
(2020) and Turc et al. (2019) by initializing the
student network via standard MLM pretraining and
then performing task-agnostic distillation by train-
ing the student to mimic a pretrained teacher on
the MLM objective. We use our pretrained base

model as the student network and large model as
the teacher network. We also experiment with
aligning the hidden states of the teacher’s and stu-
dent’s last layer via a cosine embedding loss (Sanh
et al., 2020). Since our student and teacher net-
works have different hidden state sizes, we learn a
linear projection from the student’s hidden states to
the dimension of the teacher’s hidden states prior
to computing this loss.

We distill each student for 50k steps. Similar to
pretraining (Section 5.1), we distill with a batch
size of 8,192 and linearly warmup the learning rate
for the first 5% of steps. We use a learning rate
of 5e-4 and largely follow the distillation hyperpa-
rameter choices of Sanh et al. (2020). In particular,
our loss function is a weighted combination of the
original MLM cross entropy loss (with a weight
↵MLM = 5.0), a KL divergence loss term encour-
aging the student to match the teacher’s outputs
(with a weight ↵KL = 2.0) and optionally a co-
sine embedding loss term to align the student’s and
teacher’s last layer hidden states (with a weight
↵cos = 1.0). For the KL loss we additionally em-
ploy a temperature of 2.0 to smooth the teacher’s
output distribution, following Sanh et al. (2020)
and originally advocated by Hinton et al. (2015).

7.2 Distillation Results
Results for distillation are shown in Table 6. Since
distillation trains the student for an additional 50k
steps, we also include a baseline that just trains
the student (base) model for longer without any
distillation loss terms (“ours-base + train longer”).

We find that distillation only slightly outper-
forms the original base model (+0.2% on average)
and the original base model trained longer (+0.1%
on average). Aligning the student and teacher hid-
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Model
Mean Clin

-ical
Pub
Med

Seq.
Lab. Classif. All

ours-base 85.1 84.6 86.6 81.8 84.7
+ train longer 85.0 84.7 86.6 81.8 84.8

ours-large 86.8 85.5 87.9 82.6 85.8

Distillation results (teacher = large; student = base)
distill 85.1 84.8 86.8 81.9 84.9
distill + align 85.2 84.9 86.9 81.9 85.0

Table 6: Distillation results in context with our base
and large models. Distillation outperforms both the
original base model and the base model trained longer.
Aligning the student and teacher’s hidden states further
improves performance, but the best student underper-
forms the large (teacher) model.

den states via a cosine embedding loss brings addi-
tional albeit slight gains (+0.1% on average relative
to the “distill” model). This result is consistent
with findings from Turc et al. (2019) showing that
pretrained student models are a competitive base-
line. The best student (“distill + align”) improves
upon the base model (+0.3% on average) but un-
derperforms the large teacher (-0.8% on average).

8 Related Work

Pretrained word representations have been used
in NLP modelling for many years (Mikolov et al.,
2013; Pennington et al., 2014; Bojanowski et al.,
2016), and have been specialised for BioNLP ap-
plications (Chiu et al., 2016; Wang et al., 2018b;
Zhang et al., 2019). More recently, contextual em-
beddings have led to robust improvements across
most NLP tasks, notably, ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2019), followed
more recently by models such as XLNet (Yang
et al., 2019), RoBERTa (Liu et al., 2019), XLM
and XLM-RoBERTa (Lample and Conneau, 2019;
Conneau et al., 2020) amongst others.

Several works adapt such models to scientific
and biomedical domains. Four such models – SciB-
ERT (Beltagy et al., 2019), BioBERT (Lee et al.,
2019), ClinicalBERT (Alsentzer et al., 2019) and
BioMed-RoBERTA (Gururangan et al., 2020) – are
extensively covered in Section 4. Others include
BlueBERT (Peng et al., 2019), which continues
to pretrain BERT with data from PubMed and
MIMIC-III. Zhu et al. (2018) and Si et al. (2019)
train ELMo and BERT models on clinical data. In
concurrent work, Gu et al. (2020) train models for
PubMed-like text, but do not consider clinical text.

Methods for training or finetuning models on
downstream tasks is also an active area of research.

We focus on well-established single-task finetuning
techniques for BERT-like models using standard
hyperparameter settings. Si et al. (2019) use com-
plex task-specific models to yield strong results on
clinical tasks, and Peng et al. (2020) investigate
STILTS methods (Phang et al., 2019) on a suite of
BioNLP tasks, achieving gains over baselines.

In this work, we build a suite of 18 tasks to eval-
uate our models. Aggregated benchmarks have
become a common tool in NLP research, popular-
ized by the GLUE benchmark (Wang et al., 2018a)
for language understanding and its successor Super-
GLUE (Wang et al., 2019). Evaluating on a suite of
tasks is common in BioNLP too. Lee et al. (2019)
evaluate on a set of 15 tasks, Peng et al. (2019) eval-
uate on 10 tasks referred to as “BLUE”, Beltagy
et al. (2019) and Gururangan et al. (2020) evaluate
on 7 and 2 biomedical tasks respectively. Unfortu-
nately, often there is little overlap between efforts,
and different metrics and dataset splits are often
used, making cross-model comparisons challeng-
ing, hence our efforts to evaluate all models on a
single testbed. In concurrent work, Gu et al. (2020)
also note this problem, and release a similar suite
of tasks, referred to as BLURB, but do not include
clinical tasks. We plan to evaluate our models on
the “BLURB” benchmarks in future work.

9 Conclusion

We have thoroughly evaluated 6 open-source lan-
guage models on 18 biomedical and clinical tasks.
Of these models, we found that BioBERT was
the best on biomedical tasks, but general-purpose
RoBERTa-large performed best on clinical tasks.
We then pretrained 6 of our own large-scale spe-
cialized biomedical and clinical language models.
We determined that the most effective models were
larger, used a dedicated biomedical vocabulary and
included both biomedical and clinical pretraining.
These models outperform all the other models in
our experiments. Finally, we demonstrate that our
base model can be further improved by knowledge
distillation from our large model, although there
remains a gap between the distillation-improved
base model and our large model.
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Michael Rautschka, and Laura I. Furlong. 2015. Ex-
traction of relations between genes and diseases
from text and large-scale data analysis: implica-
tions for translational research. BMC bioinformat-
ics, 16:55.

Tom B. Brown, Benjamin Pickman Mann, Nick Ryder,
Melanie Subbiah, Jean Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
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