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Abstract

While much recent work has examined how
linguistic information is encoded in pre-
trained sentence representations, compara-
tively little is understood about how these
models change when adapted to solve down-
stream tasks. Using a suite of analy-
sis techniques—supervised probing, unsu-
pervised similarity analysis, and layer-based
ablations—we investigate how fine-tuning af-
fects the representations of the BERT model.
We find that while fine-tuning necessarily
makes some significant changes, there is no
catastrophic forgetting of linguistic phenom-
ena. We instead find that fine-tuning is a
conservative process that primarily affects the
top layers of BERT, albeit with noteworthy
variation across tasks. In particular, depen-
dency parsing reconfigures most of the model,
whereas SQuAD and MNLI involve much
shallower processing. Finally, we also find that
fine-tuning has a weaker effect on representa-
tions of out-of-domain sentences, suggesting
room for improvement in model generaliza-
tion.

1 Introduction

Unsupervised pre-training of deep language mod-
els has led to significant advances on many NLP
tasks, with the popular BERT model (Devlin et al.,
2019) and successors (e.g. Lan et al., 2019; Raf-
fel et al., 2020) dominating the GLUE leaderboard
(Wang et al., 2019) and other benchmarks over the
past year. Many recent works have attempted to
better understand these models and explain what
makes them so powerful. Particularly, behavioral
studies (e.g. Marvin and Linzen, 2018; Goldberg,
2019), diagnostic probing classifiers (e.g. Veld-
hoen et al., 2016; Belinkov et al., 2017; Hupkes
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et al., 2018), and unsupervised techniques (e.g.
Saphra and Lopez, 2019; Voita et al., 2019a) have
shed light on the representations from the pre-
trained models and have shown that they encode
a wide variety of linguistic phenomena (Tenney
et al., 2019b; Liu et al., 2019).

However, in the standard recipe for models such
as BERT (Devlin et al., 2019), after initializing
with pre-trained weights, they are then trained for
a few epochs on a supervised dataset. Consider-
ably less is understood about what happens dur-
ing this fine-tuning stage. Current understand-
ing is based largely on the models’ performance.
While fine-tuned Transformers achieve state-of-
the-art accuracy, they also can end up learning
shallow heuristics (McCoy et al., 2019b; Guru-
rangan et al., 2018; Poliak et al., 2018), suggest-
ing a disconnect between the richness of features
learned from pre-training and those used by fine-
tuned models. Thus, in this work, we seek to
understand how the internals of the model–the
representation space–change when fine-tuned for
downstream tasks. We focus on three widely-
used NLP tasks: dependency parsing, natural lan-
guage inference (MNLI), and reading comprehen-
sion (SQuAD), and ask:

• What happens to the encoding of linguistic
features such as syntactic and semantic roles?
Are these preserved, reinforced, or forgotten
as the encoder learns a new task? Do different
tasks change how shallowly this information
is encoded? (Section 4)

• Where in the model are changes made?
Are parameter updates concentrated in a
small number of layers or are there changes
throughout the model? (Section 5)

• Do these changes generalize or does the new
behavior only apply to the specific domain on
which fine-tuning occurred? (Section 6)

https://ai.google/research/join-us/ai-residency/
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We approach these questions with three comple-
mentary analysis techniques. Supervised prob-
ing classifiers (Tenney et al., 2019b; Hewitt and
Manning, 2019; Voita and Titov, 2020) provide
a means of explicitly testing for the presence of
pre-specified linguistic phenomena, while Repre-
sentational Similarity Analysis (RSA; Kriegesko-
rte et al., 2008) gives a task-agnostic measurement
of the change in model activations. Finally, we
corroborate our results with two types of layer-
based ablations–truncation and partial freezing–
and measure their effect on end-task performance.

Taken together, we conclude that fine-tuning
involves primarily shallow model changes, evi-
denced by three specific observations. First, lin-
guistic features are not lost during fine-tuning but
tasks can differ in how they either surface or ob-
fuscate different phenomena. Second, fine-tuning
tends to affect only the top few layers of BERT,
albeit with variation across tasks: SQuAD and
MNLI have a relatively shallow effect, while de-
pendency parsing involves deeper changes to the
encoder. We confirm this by partial-freezing ex-
periments which test how many layers need to
change to do well on each task and relate this to
an estimate of task difficulty (with respect to the
pre-training regime) via layer ablations. Finally,
we observe that fine-tuning induces large changes
on in-domain examples, yet on out-of-domain sen-
tences, the representations more closely resemble
those of the pre-trained model.

2 Related Work

Base model Many recent papers have focused
on understanding sentence encoders such as
ELMo (Peters et al., 2018a) and BERT (De-
vlin et al., 2019), focusing primarily on the “in-
nate” abilities of the pre-trained (“Base”) mod-
els. For example, analyses of attention weights
have shown interpretable patterns (Coenen et al.,
2019; Vig and Belinkov, 2019; Voita et al., 2019b;
Hoover et al., 2019) and found strong correlations
to syntax (Clark et al., 2019). Kovaleva et al.
(2019) also saw that fine-tuning mainly changes
the attention of the last few layers, consistent with
our findings in Section 5.1. However, other studies
have cast doubt on what conclusions can be drawn
from attention patterns (Jain and Wallace, 2019;
Serrano and Smith, 2019; Brunner et al., 2019).

More generally, supervised probing models and
diagnostic classifiers make few assumptions be-

yond the existence of model activations and can
test for the presence of a wide variety of phenom-
ena. Tenney et al. (2019b); Liu et al. (2019); Pe-
ters et al. (2018b) introduced task suites that probe
for high-level linguistic phenomena such as part-
of-speech, entity types, and coreference, while
Tenney et al. (2019a) showed that these phenom-
ena are represented in a hierarchical order within
the layers of BERT. Hewitt and Manning (2019)
used a geometrically-motivated probe to explore
syntactic structures, and Voita and Titov (2020)
and Pimentel et al. (2020) designed information-
theoretic techniques that can measure the model
and data complexity.1

While probing models depend on labelled data,
parallel work has studied the same encoders us-
ing unsupervised techniques. Voita et al. (2019a)
used a form of canonical correlation analysis (PW-
CCA; Morcos et al., 2018) to study the layer-
wise evolution of representations, while Saphra
and Lopez (2019) explored how these representa-
tions evolve during training. Abnar et al. (2019)
used Representational Similarity Analysis (RSA;
Laakso and Cottrell, 2000; Kriegeskorte et al.,
2008) to study the effect of context on encoder rep-
resentations, while Chrupała and Alishahi (2019)
correlated them with syntax.

Fine-tuning Comparatively few analyses have
focused on understanding the fine-tuning process.
Initial studies of fine-tuned encoders have shown
state-of-the-art performance on benchmark suites
such as GLUE (Wang et al., 2019) and surprising
sample efficiency (Peters et al., 2018a). However,
behavioral studies with challenge sets (McCoy
et al., 2019b; Poliak et al., 2018; Ettinger et al.,
2018; Kim et al., 2018) have shown limited abil-
ity to generalize to out-of-domain data and across
syntactic perturbations. van Aken et al. (2019)
focused on question-answering models with task-
specific probes. Peters et al. (2019) analyzed the
effects of fine-tuning with respect to the perfor-
mance of diagnostic classifiers. Gauthier and Levy
(2019) studied fine-tuning via RSA, finding a sig-
nificant divergence between the representations of
models fine-tuned on different tasks. Concurrent
work by Tamkin et al. (2020) investigated the
transferability of pre-trained language models and
performed an number of layer ablations. Consis-
tent with our observations in Section 5.2, they find

1See Belinkov and Glass (2019) and Rogers et al. (2020)
for a survey of probing methods.



35

differences in which layers are important for fine-
tuning different tasks. However, none of the prior
provides a comprehensive analysis of what hap-
pens to the internal representations of the BERT
model. In our work, we find that by comparing the
Base to the fine-tuned models either via probing,
RSA, and layer ablations provides novel insights
about this additional phase of training.

3 Experimental Setup

BERT We focus on the popular BERT model
(Devlin et al., 2019), focusing on the 12-layer
base uncased variant.2 We denote the pre-
trained model as Base and refer to fine-tuned ver-
sions by the name of the task.

MNLI A common benchmark for natural lan-
guage understanding, the MNLI dataset (Williams
et al., 2018) contains over 433K sentence pairs an-
notated with textual entailment information. We
fine-tune BERT using the architecture and param-
eters of Devlin et al. (2019), using a softmax layer
on [CLS] representation to predict the output la-
bel. Across three trials, the evaluation accuracy of
our BERT Base model is 83.3±0.1, slightly lower
but comparable to the published score of 84.6.

SQuAD The SQuADv1.1 dataset (Rajpurkar
et al., 2016) contains over 100K crowd-sourced
question-answer pairs, created from a set of
Wikipedia articles. We fine-tune BERT using
the architecture and parameters of Devlin et al.
(2019), which uses two independent softmax lay-
ers to predict the start and end tokens of the answer
span. Our average F1 score is 89.2± 0.2, slightly
higher than the published 88.5.

Dependency Parsing We also introduce a
BERT model fine-tuned on dependency parsing
(Dep). We include this task to present a con-
trasting perspective from the prior two datasets,
since prior research has suggested that much of the
information needed to solve dependency parsing
is already present after pre-training (Hewitt and
Manning, 2019; Goldberg, 2019; Tenney et al.,
2019b). Our model is trained on data from the
CoNLL 2017 Shared Task (Zeman et al., 2017)
and uses the features of BERT as input to a bi-
affine classifier, similar to Dozat and Manning
(2017). The model uses a learning rate of 3⇥10�5

2We use the original TensorFlow (Abadi et al.,
2015) implementation from https://github.com/
google-research/bert.

with a 10% warm-up portion, uses an Adam opti-
mizer (Kingma and Ba, 2014), and is trained for
20 epochs. The Labeled Attachment Score (LAS)
on the development set is 96.3±0.1 for our model3

4 What happens to linguistic features?

Equipped with the models trained on these down-
stream tasks, we ask how the representation of
linguistic features compare to those in the pre-
trained model? Recent studies have shown that
these robust features are not necessarily used to in-
form predictions on downstream tasks, with mod-
els appearing to use dataset heuristics such as lex-
ical overlap (McCoy et al., 2019b) or word pri-
ors (Poliak et al., 2018), but it is an open question
whether this is because these features are forgot-
ten entirely or simply are not always used. We ex-
plore this with supervised probing techniques, us-
ing edge probing (Tenney et al., 2019b) and struc-
tural probes (Hewitt and Manning, 2019) to ex-
plore how well linguistic information can be re-
covered from the fine-tuned model.

Edge Probing Edge probing aims to measure
how contextual representations encode various lin-
guistic phenomena, including part-of-speech, en-
tity typing, and coreference. We use the tasks and
parameters of Tenney et al. (2019b), which uses
a two-layer MLP to predict edge and span labels
from frozen encoder representations.4 As we are
interested in whether the linguistic knowledge is
retained by the model overall, we utilize the mix
version of the edge probes, which takes as input a
learned scalar mixing of the representations from
every layer.5 After training, we report the micro-
averaged F1 scores on a held-out test set.

Structural Probe Complementary to the edge
probes, the structural probes of Hewitt and Man-
ning (2019) analyze how well representations en-
code syntactic structure. Specifically, the probe
identifies whether the squared L2 distance of rep-
resentations under some linear transformation en-

3 We provide additional details of the experiments and
datasets in Appendix C for the purpose of reproducibility.

4The dependency labeling task is from the English Web
Treebank (Silveira et al., 2014), SPR corresponds to SPR1
from Teichert et al. (2017), and relations is Task 8 from Se-
mEval 2010 (Hendrickx et al., 2010). All of the other tasks
are from OntoNotes 5.0 (Weischedel et al., 2013).

5We also explored the effects of fine-tuning on the top
layer of BERT to provide additional insight into whether this
linguistic information may be lost from the top layers even if
still present elsewhere. For results, see Appendix A.

https://github.com/google-research/bert
https://github.com/google-research/bert


36

� for Baselines � for Fine-tuned Models
Task BERT Base Lexical Randomized MNLI SQuAD Dep
POS 97.5 -9.0 -13.6 -0.2 -1.5 -0.2
Constituents 84.4 -12.9 -24.1 -2.2 0.1 4.4
Dependencies 95.5 -15.6 -18.2 -0.5 -2.5 0.2
Entities 96.2 -6.6 -10.0 -0.3 -0.9 -0.6
SRL 92.9 -13.6 -15.0 -0.4 -2.9 -0.5
Coreference 95.7 -5.8 -6.2 -0.5 -0.8 -1.2
SPR 84.6 -6.6 -12.2 -0.7 -0.4 -1.2
Relations 79.5 -20.7 -40.5 -0.8 -0.4 -2.5

Table 1: Comparison of F1 performance on the edge probing tasks before and after fine-tuning. The BERT Base
performance is consistent with (Tenney et al., 2019b), and the results show that the fine-tuned models retain most of
the linguistic concepts discovered during unsupervised pre-training. We report single numbers for clarity, but note
that variation across runs is ±0.5 between probing runs, ±0.7 between fine-tuning runs from the same checkpoint,
and ±1.0 point between different pre-training runs.

codes the dependency parse. The two versions of
the structural probe either attempt to predict the
tree depth for each word (distance from the root
node) or pairwise distances for all words in the
parse tree. For both, we measure the Spearman
correlation between predicted and true values 6

4.1 Results

The results from both probing tasks demonstrate
that the linguistic features from pre-training are
preserved in the fine-tuned models. This is first
seen in the edge probing metrics presented in Ta-
ble 1. For the sake of comparison, we provide
baseline results on the output of the embedding
layer (Lexical) and a randomly initialized BERT
architecture (Randomized). These baselines are
important as inspection-based analysis can often
discover patterns that are not obviously present
due to the high capacity of auxiliary classifiers.
For example, Zhang and Bowman (2018); Hewitt
and Liang (2019) found that expressive-enough
probing methods can perform surprisingly well
even when trained on randomized encoders.

Across the edge probing suite, we see only
small changes in F1 score from the fine-tuned
models compared to BERT base. In most cases,
we observe a drop in performance of 0.5-2%, with
some variation: MNLI and SQuAD lead to drops
of 1.5-3% on syntactic tasks–constituents, and
POS, dependencies, and SRL, respectively–while
the dependency parsing model leads to signifi-

6Note that Hall Maudslay et al. (2020) has recently raised
concern about these metrics, but we follow the original
method of Hewitt and Manning (2019) for the most compa-
rable results.

cantly improved syntactic performance (+4% on
constituent labeling) while dropping performance
on the more semantically-oriented coreference,
SPR, and relation classification tasks. We hypoth-
esize that these changes relate to the similarity be-
tween tasks: a task like constituent labels help im-
prove dependency parsing, and is thus strength-
ened, whereas higher level semantic tasks such as
SPR contribute less directly and such information
may be lost during fine-tuning. Nonetheless, in
most cases these effects are small: they are com-
parable to the variation between randomly-seeded
fine-tuning runs (±0.7), and much smaller than the
difference between the full model and the Lexi-
cal or Randomized baselines, suggesting that most
linguistic information from BERT is still available
within the model after fine-tuning.

Next, we turn to the structural probe, with re-
sults seen in Figure 1. First, the dependency pars-
ing fine-tuned model shows improvements in the
Spearman correlation, as early as layer 5. Since
the structural probes are designed and trained to
look for syntax, this result suggests that the fine-
tuning improves the model’s internal representa-
tion of such information. This makes intuitive
sense as the fine-tuning task is aligned with the
probing task. On the MNLI and SQuAD fine-
tuned models, we observe minimal changes in per-
formance, with small drops within the final layer.
This artifact likely emerges from the fine-tuning
setup where the last layer is only needed for clas-
sification or span prediction and therefore is un-
likely to also retain all the linguistic information.7

7A similar story emerges when repeating the edge probing
models on the last layer of BERT; see Appendix A.
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Figure 1: Comparison of the structural probe performance on BERT models before and after fine-tuning. The
stability of the Spearman correlations between both the depths and distance probes suggest that the embeddings
still retain significant information about the syntax of inputted sentences.

This result suggests that the actual magnitude of
change within the “syntactic subspace” is quite
small. This is consistent with observations by
Gauthier and Levy (2019) and suggests that infor-
mation about syntactic structure is well-preserved
in models on downstream tasks.

One caveat of the experimentation above is that
it uses complex diagnostic classifiers and only re-
ports final model performance. Instead, what if
the linguistic features were simply becoming more
difficult to extract from the representations? Then,
they could be not as readily “available” after fine-
tuning. We explored this hypothesis using Mini-
mum Description Length probes (Voita and Titov,
2020), with the results presented in Appendix B.
We found minimal differences across most tasks,
where the only significant result was that fine-
tuning on dependency parsing made the corre-
sponding edge probing task easier to learn as a
function of the number of examples.

4.2 Conclusion
Overall, our results suggest that linguistic features
are still available, and that the fine-tuning process
does not lead to catastrophic forgetting. Nonethe-
less, behavioral analyses have shown that fine-
tuned models can still fail to leverage even simple
syntactic knowledge in their predictions (McCoy
et al., 2019b,a; Min et al., 2020), and may instead
rely on annotation artifacts (Gururangan et al.,
2018) or pattern matching (Jia and Liang, 2017).
This suggests that the changes from fine-tuning are
conservative: rich features are still present even if
the model ends up finding a naive, simple solution.

5 Where do the representations change?

The supervised probes from the previous section
are highly targeted: as trained models, they are
sensitive to particular linguistic phenomena, but

they also can learn to ignore everything else. If
the supervised probe is closely related to the fine-
tuning task–such as for syntactic probes and de-
pendency parsing–we observe significant changes
in performance, but otherwise we see little effect.
Nonetheless, we know that something must be
changing during fine-tuning–at minimum because,
as shown in Peters et al. (2019), performance de-
grades significantly if the encoder is completely
frozen. To explore this change, we turn to an
unsupervised technique, Representational Similar-
ity Analysis (RSA; Laakso and Cottrell, 2000),
which is sensitive to the global structure of the em-
bedding space, and corroborate our findings with
layer-based ablations. While these techniques are
not targeted to specific linguistic phenomena, they
do provide a powerful exploratory tool that can il-
luminate which parts of the model change and how
they vary across datasets.

5.1 Representational Similarity Analysis

RSA is a technique for measuring the similarity
between two different representation spaces for a
given set of stimuli. Originally developed for neu-
roscience (Kriegeskorte et al., 2008), it has be-
come increasingly used to analyze similarity be-
tween neural network activations (Abnar et al.,
2019; Chrupała and Alishahi, 2019). The method
works by using a common set of n examples, used
to create two sets of representations. For each set,
a kernel is used to define a pairwise similarity ma-
trix in Rn⇥n. The final similarity score between
the two representation spaces is calculated as the
Pearson correlation between the flattened upper
triangulars of the two similarity matrices.

In our application, we pass ordinary sentences
(Wikipedia), sentence-pairs (MNLI), or question-
answer pairs (SQuAD) as inputs to the BERT
model, and select a random sample (n = 5000) of
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Figure 2: Comparison of the representations from
BERT base and various fine-tuned models, when tested
on Wikipedia examples. The dependency probing
model starts to diverge from BERT Base around layer
5, matching previous results from edge probing. For
the MNLI and SQuAD models, the differences from
the Base model arise in the top layers of the network.

tokens as stimuli. This input is consistent with the
masked language model pre-training, various fine-
tuning tasks, and diagnostic classifiers in analyz-
ing the contextual representations for every token.
We extract the activations of corresponding layers
from the two models to compare (e.g. Base vs.
a fine-tuned model). Following previous applica-
tions of RSA to text representations (Abnar et al.,
2019; Chrupała and Alishahi, 2019), we adopt the
cosine similarity kernel.

While RSA does not require learning any pa-
rameters and is thus resistant to overfitting (Abdou
et al., 2019), the metric can be sensitive to spu-
rious signals in the representations that may not
be relevant to model behavior.8 To mitigate this,
we repeat the BERT pre-training procedure (as de-
scribed in Section 3 of Devlin et al., 2019) from
scratch three times. For each pre-trained check-
points, we fine-tune on the three downstream task
and report the average for these independent runs.

Results Figure 2 shows the results of our RSA
analysis comparing the three task models, Dep,
MNLI, and SQuAD, to BERT Base at each layer.
Note that in these figures, lower values imply
greater change relative to the pre-trained model.
Across all tasks, we observe that changes gener-
ally arise in the top layers of the network, with lit-
tle change observed in the layers closest to the in-

8We note that probing techniques are more robust to this,
since they learn to focus on relevant features.

put. To first order, this may be a result of optimiza-
tion: vanishing gradients result in the most change
in the layers closest to the loss. Yet we interest-
ingly do observe significant differences between
tasks. For dependency parsing, we observe the
deepest changes, departing from the Base model
as early as layers 4 and 5. This result likely arises
as syntactic understanding of input is maximized
in the early layers of the model, as measured by
the edge probes of (Tenney et al., 2019a) and pre-
sented structural probes. Performing optimally on
this task would require surfacing this information
in all subsequent layers, leading to these changes.

Except for the last layer which is particularly
sensitive to the form of the output (span-based for
dependencies and SQuAD, or using the [CLS]
token for MNLI), we see that MNLI involves the
smallest changes to the model: the second-to-last
attention layer still shows a very high similarity
score of 0.84 ± 0.02 compared to the represen-
tations of the pre-trained encoder. The SQuAD
model shows a slightly steeper change, behav-
ing similarly to the Base model through layer 7
but dropping off afterwards - suggesting that fine-
tuning on this task involves a deeper, yet still
relatively shallow reconfiguration of the encoder.
SQuAD likely shows deeper processing as choos-
ing an answer span still requires satisfying a num-
ber of syntactic constraints and requires evolution
across more than just two layers (van Aken et al.,
2019), but overall, we see that for these benchmark
tasks, fine-tuning is conservative and only changes
a fraction of the model’s representations.

5.2 Layer Ablations

As an unsupervised, metric-based technique, RSA
tells us about broad changes in the representation
space, but does not in itself say if these changes
are important for the model’s behavior–i.e. for
the processing necessary to solve the downstream
task. To measure our observations in terms of task
performance, we turn to two layer ablation studies.

Partial Freezing can be thought of as a test
for how many layers need to change for a down-
stream task. We freeze the bottom k layers (and
the embeddings)–treating them as features–but al-
low the rest to adapt. Effectively, this clamps the
first k layers to have RSA similarity of 1 with the
Base model. Also, we perform model truncation
as a rough estimate of difficulty for each task, and
as an attempt to de-couple the results of partial
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Figure 3: Effects of freezing an increasing number of
layers during fine-tuning on performance (we report the
evaluation accuracy for MNLI, F1 score for SQuAD,
and LAS for Dep). The point at -1 corresponds to
no frozen components. The graph shows that only a
few unfrozen layers are needed to improve task perfor-
mance, supporting the shallow processing conclusion.

freezing from helpful features that may be avail-
able in top layers of BERT Base (Tenney et al.,
2019a). Figure 3 (partial freezing) and Figure 4
(truncation) show the effect on task performance.

The patterns we observe corroborate the find-
ings of our RSA analysis. On MNLI, we find that
performance does not drop significantly unless the
last two layers are frozen, while the truncated
models are able to achieve comparable perfor-
mance with only three attention layers. This sug-
gests that while natural language inference (Dagan
et al., 2006) is known to be a complex task in the
limit, most MNLI examples can be resolved with
relatively shallow processing. SQuAD exhibits a
similar trend: we see a significant performance
drop when 3 or fewer layers are allowed to change
(e.g. freezing through layer 8 or higher), consis-
tent with where RSA finds the greatest change.
From our truncation experiment, we similarly see
that only five layers are needed to achieve compa-
rable performance to the full model.

Dependency parsing performance drops even
more rapidly–in both experiments–consistent with
the results from RSA. This is surprising, since
probing analysis (Goldberg, 2019; Marvin and
Linzen, 2018) suggests that many syntactic phe-
nomena are well-captured by the pre-trained
model, and diagnostics for dependency parsing
in particular (Tenney et al., 2019b,a; Hewitt and
Manning, 2019; Clark et al., 2019) show strong
performance from probes on frozen models. Yet

Figure 4: Effects of fine-tuning at earlier layers of
BERT. We note that the MNLI evaluation accuracy and
SQuAD F1 score approach the full model performance
by layer 6, whereas the dependency parsing LAS seems
to require more layers.

as observed with the structural probes (Figure 1)
there is headroom available, and it appears that
to capture it requires changing deeper parts of the
model. We hypothesize that this effect may come
from the hierarchical nature of parsing, which re-
quires additional layers to determine the full tree
structure. Fully reconciling these observations
would be a promising direction for future work.

6 Out-of-Domain Behavior

Finally, we ask whether the effects of fine-tuning
are general: do they apply only to inputs that
look like the fine-tuning data, or do they lead to
broader changes in behavior? This is usually ex-
plored by behavioral methods, in which a model is
trained on one domain and evaluated on another–
for example, the mismatched evaluation for MNLI
(Williams et al., 2018)–but this analysis is limited
by the availability of labeled data. By using RSA,
we can test this in an unsupervised manner.

We use RSA to compare the fine-tuned model
to Base and observe the degree of similarity when
inputs are drawn from different corpora. We use
random samples from the development sets for
MNLI (as premise [SEP] hypothesis)
and SQuAD (as question [SEP] passage)
as in-domain for their respective models,9 and
as the out-of-domain control we use random
Wikipedia sentences (which resemble the pre-
training domain). As in Section 5.1, we use the

9Note that these are unseen during fine-tuning, although
RSA scores do not change significantly if the MNLI or
SQuAD training sets are used.
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Figure 5: Comparison of the representations in the MNLI (left) and SQuAD (right) fine-tuned models and those
of BERT Base, with the different lines corresponding to examples coming from various datasets. These graphs
show that fine-tuning models only lead to shallow changes, consolidated to the last few layers. Also, we see that
fine-tuning has a much greater impact on the token representations of in-domain data.

representations of n = 5000 tokens as our stimuli
for each comparison.10 Results for the MNLI and
SQuAD fine-tuned models are shown in Figure 5.

Although we see that all models diverge from
BERT Base in the top layers, there is a signifi-
cantly larger change in the representations on in-
domain examples. This suggests that fine-tuning
is specific to the target domain. For other exam-
ples, such as the Wikipedia sentences which re-
semble the pre-training data, the similarity score
with BERT Base is much higher. This suggests
that fine-tuning leads the model to change its rep-
resentations for the new domain but to continue to
behave more like the Base model otherwise. This
final result again shows that fine-tuning is con-
servative and suggests room for improvement in
model generalization to out-of-domain sentences.

7 Conclusions

In this paper, we employ three complementary
analysis methods to gain insight into effects of
fine-tuning on the representations produced by
BERT. From supervised probing analyses, we find
that the linguistic structures discovered during pre-
training remain available after fine-tuning, though
this information is not strengthened by tuning on
benchmark tasks such as MNLI and SQuAD. In
light of prior studies (McCoy et al., 2019b; Jia
and Liang, 2017) which have shown that end-task
models often fall back on simple heuristics, our re-
sults are especially interesting: they suggest that

10We also tested single-sentence examples from MNLI and
SQuAD by only taking the premise and question respectively;
the trends were similar to Figure 5.

the model has the option of using stronger fea-
tures, but chooses to use heuristics instead.

Next, our results using RSA and layer ablations
show that the changes from fine-tuning alter a frac-
tion of the model capacity, specifically within the
top few layers (up to some variation across tasks).
Also, although fine-tuning has a significant effect
on the representations of in-domain sentences, the
representations of out-of-domain examples remain
much closer to those of the pre-trained model.

Overall, these conclusions suggest that fine-
tuning–as currently practiced–is a conservative
process: preserving linguistic features, affecting
only a few layers, and specific to in-domain exam-
ples. While the standard fine-tuning recipe unde-
niably leads to strong performance on many tasks,
there appears to be room for improvement: an op-
portunity to refine this transfer step–potentially by
utilizing more of the model capacity–to better the
generalization and transferability.

Finally, in this work, we pulled from a range
of analysis techniques to understand very fine-
grained aspects of model representations (via
probing classifiers) and coarse-grained ones (via
RSA). An important direction for future work is
the development of new techniques which allow
for more exploration of the middle ground. Given
available techniques, we can illuminate broadly
that models are changing and test hypotheses
about specific features (with probing tasks or at-
tention analyses). New principled methods for dis-
covering which features change will be invaluable
for a deeper understanding of these models.
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