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Abstract

Constrained decoding forces a certain set words or phrases to appear in the translation results
and is very useful when adapting MT to a certain domain. In recent years, the Transformer
model has outperformed other neural machine translation models to become the state-of-the-
art paradigm. However, constrained decoding for domain adaptation remains an open problem
under the Transformer model. In this paper, we first investigate how a constrained decoding
method – Grid Beam Search (GBS) – performs in the Transformer model, and then propose a
source-informed heuristic method that can fully take advantage of the alignment information
from the multi-head attention mechanism in Transformer to speed up the decoding in the GBS
method and guide the placement of constraints during the expansion of hypotheses in GBS. Ex-
periments on English–Chinese and English–German translation domain adaptation tasks show
that the proposed method significantly outperforms the basic Transformer model in terms of
BLEU and METEOR score, and prunes up to 30% hypotheses to save up to 20% decoding
time compared to the GBS model while maintaining comparable translation performance.

1 Introduction

With recent advances in neural machine translation (NMT), The Transformer model (Vaswani
et al., 2017) has outperformed other NMT architectures, like RNN (Luong et al., 2015) and
CNN (Gehring et al., 2017), to become the state-of-the-art paradigm. The Transformer model
mainly consists of layers of self-attention and a feed-forward network. It is capable of being
fully parallelised and is faster both in training and inference. Its multi-layer and multi-head
attention mechanism enable it to capture deep syntactic and semantic relations in sentences to
produce better translation results.

Constrained decoding is an approach that exerts some constraints to a decoding process
(often a beam search process) and enforces the constraints to appear in the decoding results.
For translation tasks, constraints are normally some target words or phrases which are acquired
in advance through domain knowledge or other methods. Constrained decoding ensures con-
straints partially or fully appear in the translation results by means of certain algorithms. The
translation results of constrained decoding are often better than the normal decoding results, as
those constraints are actually some external knowledge besides the source sentences.

∗This work was done while the co-author were working with us in the ADAPT Centre at Dublin City University.
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Different constrained decoding approaches have been proposed. Luong and Manning
(2015), Sennrich et al. (2016a) adapted NMT systems with domain-specific data by adjust-
ing their output vocabulary to better match the target domain. Besides, Wang et al. (2017) tried
early attempts to improve translation consistency for NMT models with discourse-level context.
However, these methods do not strictly enforce a constraint, so constraints are not guaranteed
to appear in the output.

Anderson et al. (2017) extended beam search with a finite state acceptor (FSA) whose
states mark the completed subsets of the set of constraints. However, their algorithm has an
exponential complexity of O(Nk2C), where n is the sentence length, k is beam size, and C is
the constraint count. This results in a very slow decoding speed when the number of constraints
increased.

Hokamp and Liu (2017) proposed a novel grid beam search (GBS) method that can enforce
any constraints to appear in the translation results. In order to ensure the constraints are placed
in the right positions in the translation results, GBS assumes that all constraints may appear at
each decoding step and extends a beam vertically to grid beams. This means there are several
beams at each step rather than a single beam. As a result, the number of hypotheses increases
linearly according to the number of constraints. GBS can adapt a general NMT model to a
domain translation task and improve the translation quality (Hokamp and Liu, 2017). Even
though it has a complexity of O(NkC), it may expand a very large search space when the
number of constrains increases, which also results in a slow and computationally expensive
decoding process.

Post and Vilar (2018) proposed a fast lexically constrained decoding method with dynamic
beam allocation (DBA) for NMT. This method groups together hypotheses that meet the same
number of constraints into banks, and dynamically divides a fixed-size beam across these banks
at each time step, which results in a complexity of O(Nk), so the DBA is faster and can pro-
cess large constraint sets easily. The disadvantage of DBA is that the translation quality strongly
depends on some factors, such as the beam size k. Their experiments show that system perfor-
mance experiences a significant decrease compared to the original GBS system. DBA can be
regarded as a better trade-off between translation quality and decoding time when applying
constrained decoding to NMT.

There are two common problems in the above methods. First, all are based on the RNN
model. Whether term constraints are necessary and whether those constraining algorithms are
effective on the Transformer model are still open problems and deserve to be verified. Second,
when decoding, only the constraints’ own information is exploited to guide the placement of
constraints, and no other information, such as source-side words, is used. An obvious deficiency
of these algorithms is that all possible constraints of a sentence have to be considered at each
decoding step. Furthermore, only the decoding score is used to rank and prune hypotheses in
the beams. This mechanism might place a constraint in the wrong position and generate an
output with a low score due to the enforced inclusion of all constraints in the output. Intuitively,
a better strategy is to guide the constrained decoder to place constraints in the correct positions
with the help of more useful information, so to avoid the extensive exploration of a very large
search space and obtain better decoding results. As target-side constraints are actually deduced
from the source sentences, if we can utilize some source-side information, we may be able to
confine the search space or guide the decoding process to locate target-side constraints more
accurately.

Confronting these two problems, this paper first investigates the feasibility and effective-
ness of performing constrained decoding using GBS in Transformer. We then propose a source-
informed heuristic method to reduce the search space of the GBS method so to speed decod-
ing while maintaining comparable translation performance. We propose a simple but effective
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lexically constrained decoding strategy for Transformer, which makes use of the alignment in-
formation from the multi-head attention in Transformer to place probably correct constraints at
time step t. In doing so, we can control the number of paths to expand in the GBS, and speed
up the decoding process.

The main contributions of this paper include: (1) to the best of our knowledge, our work
is the first to implement constrained decoding in the Transformer model and verify its perfor-
mance; (2) we propose an effective and efficient method for the constrained Transformer model
which fully uses source-side information from the multi-head attention in Transformer to guide
the placement of constraints at each time step for a better balance between translation quality
and decoding time; (3) we compare the proposed method with unconstrained Transformer and
GBS Transformer via extensive experiments, and demonstrate that our model significantly out-
performs the basic Transformer model in terms of BLEU (Papineni et al., 2002) and METEOR
score (Denkowski and Lavie, 2014), and significantly saves up to 20% decoding time compared
to the GBS model with no deterioration in performance.

2 Transformer and Grid Beam Search

2.1 Neural Transformer Model

Figure 1: Transformer model

As shown in Figure 1, Transformer makes use of self-attention as the basic computa-
tional block. It uses a combination of self-attention and feed-forward layers in the encoder
and additional source attention layers on the decoder side. In the standard Transformer model,
the encoder is composed of a stack of Nx = 6 identical layers, with each layer having two
sub-layers, namely a multi-head self-attention mechanism and a position-wise fully connected
feed-forward network. A residual connection is employed around each of the two sub-layers,
followed by layer normalisation. The decoder is also composed of a stack of Nx = 6 identi-
cal layers. In addition to the two sub-layers in each encoder layer, the decoder inserts a third
sub-layer, which performs multi-head attention over the output of the encoder stack. Similar to
the encoder, residual connections are also employed around each of the sub-layers, followed by
layer normalization. Transformer’s self-attention includes attention between decoder layers and
the encoder’s outputs, which is similar to the attention in RNN and can be regarded as alignment
between source and target. Please refer to Vaswani et al. (2017) for more details.

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas 
October 6 - 9, 2020, Volume 1: MT Research Track

Page  38



2.2 Grid Beam Search for Constrained NMT
In normal beam search (Lowerre, 1976; Sutskever et al., 2014), the decoder maintains a beam
with a fixed size k containing a set of expanded hypotheses. As mentioned, the decoding in
RNN-based and Transformer NMT models is an auto-regressive process, so at each time step
t, the decoder produces a distribution over the target-language vocabulary for each of these
hypotheses, depending on the previous time step t − 1. As each beam contains k hypotheses,
this produces a large matrix of dimension k × |VT |.

In order to integrate external knowledge into NMT without intervening in its learning
process, constrained decoding can be adopted by NMT, which we call constrained NMT. By
definition, constraints in constrained NMT indicate a set of pre-specified words, phrases or
terms, which are acquired by automatic extraction from the corpus or via manually compilation.
Constrained NMT can enforce constraints in the hypotheses and select from the set of complete
hypotheses the best one that satisfies all constraints.

Hokamp and Liu (2017) formalise the notion of lexical constraints, and propose the grid
beam search decoding algorithm which forces constraints to appear in the output. It organises
the decoding process by expanding the beam of each step to grid beams which contain more than
one beam. The beam count inside a grid beam corresponds to the token number of constraints.
This method puts each constraint in all potential positions during decoding and it uses a kind of
traversal method to find the best result.

To be specific, each beam in the grid is indexed by time step t and constraint variable c. c
indicates how many constraint tokens have been covered so far by the current active hypothesis
in the current beam. At each time step, only one single constraint token is covered, i.e. the
set of constraints is an array of sequences, where each token can be indexed as constraintsij ,
indicating tokenj in the constrainti. numC is used to represent the total number of tokens in
all constraints C.

The hypotheses in a beam can be separated into two types:

(1) open hypotheses: the next token can be generated either from the model, or from the
available constraints;

(2) closed hypotheses: the next token can only be generated from a currently unfinished con-
straint.

At each step t of the search process, the beam at Grid[t][c] is filled with candidates which may
be created in three ways:

(1) the open hypotheses in the beam to the left (Grid[t − 1][c]) may generate continuations
from the model’s distribution pθ(yi|x, y0...yi−1);

(2) the open hypotheses in the beam to the left and below (Grid[t− 1][c− 1]) may start new
constraints;

(3) the closed hypotheses in the beam to the left and below (Grid[t−1][c−1]) may continue
constraints.

The beams at the top level of the grid (beams where c = numC) contain hypotheses which
cover all constraints. Once a hypothesis at the top level generates the 〈EOS〉 token, it can be
added to the set of finished hypotheses (cf. Hokamp and Liu (2017) for more detail).

3 Multi-Head Attention-Guided Source Information as Heuristics for
Constrained Transformer

Our motivation to use source-side information as heuristics is that in both GBS and DBA, only
the constraints’ own information (often some target-side words) is used. The methods do not
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decide which constraint should be placed at time step t, so all available constraints need to be
considered during the decoding process. The fact is that constraints extracted from the corpus
or via terminology entries are bilingual, while source-side information is simply discarded in
current constrained decoding methods.

Following the work of GBS in RNN-based NMT (Hokamp and Liu, 2017), we re-
implement it in the Transformer model, and then take advantage of the alignment information
from the multi-head attention mechanism to obtain corresponding source-side positions at time
step t, and then guide the decoder to place corresponding constraints in the beam, which we call
“Heuristic GBS (HGBS)”.

3.1 Algorithm

Algorithm 1 Pseudo-code for Heuristic Grid Beam Search
1: procedure HEURISTIC SEARCH(model, input, constraints,maxLen, numC, k)
2: if hyp.isOpen() then . Start from Line 15 of GBS Algorithm
3: for c in constraints do
4: if c not used then
5: pA = multiHeadSearch(t, c)
6: if pA >= pth then
7: n← n ∪ model.start(hyp, input, c) . Only the constraint c is placed in

the beam

When we use Pointwise Mutual Information (PMI) method (Hokamp and Liu, 2017) to
extract a constraint, we actually obtain a segment pairs which contains both the source segment
and target segment, which we call a “constraint pair”. A Chinese–English constraint pair with
source positions is shown in Table 1. There is a source sentence “传统劳动密集型产品因价格
下降带来的出口值减少” whose reference target sentence is “The export value of traditional
labor-intensive products decreased due to the price drop”. PMI method can extract a constraint
pair “劳动密集型产品 ||| labor intensive products” where “labor intensive products” is sup-
posed to appear in the translation. This constraint pair is underlined in both source and target
sentence in the table. The table also shows that the position of the source part of the constraint
in the source sentence is 1, 2 and 3.

At time step t in decoding, before we want to take this target constraint as a candidate to
start new constraints in the beam, we first retrieve the source word positions {1, 2, 3}. With this
position information, we can look at the multi-head attention, and obtain the weights at time
step t pointing to these three source word positions. By using these weights, we can decide
whether we should start a new hypothesis of this constraint in the beam or not.

Source sentence 传统劳动密集型产品因价格下降带来的出口值减少

Target sentence
The export value of traditional labor intensive products decreased due
to the price drop

Target side of constraint labor intensive products
Source side of constraint 劳动密集型产品

Position in source {1, 2, 3}

Table 1: An example of a Chinese–English constraint pair

Obviously, there is a risk that if the alignment is incorrect, then we might put the constraint
in the wrong place. However when hypotheses in the beam compete with each other via the
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model score, the possibility of generating a hypothesis with wrongly placed constraints in the
output will greatly reduce.

Algorithm 1 shows the core parts of our proposed HGBS method, which is modified based
on Line 15 and 16 of the GBS Algorithm (Hokamp and Liu, 2017) by adding alignment infor-
mation to guide the grid search.

3.2 Multi-Head Attention for Source-Informed Constraints
An attention function can be described as mapping a query and a set of key-value pairs to
an output, where the query, keys, values, and output are all vectors. The output is computed
as a weighted sum of the values, where the weight assigned to each value is computed by a
compatibility function of the query with the corresponding key (Vaswani et al., 2017).

From Figure 1 we can see that there are multiple layers for the encoder and decoder, re-
spectively. The multi-head self-attention from the last layer of the encoder is fed to each layer
of the decoder to construct the soft attention alignment between the target and source posi-
tions. We found that the alignment in the last layer of the decoder works best, so we only use
the alignment information from the last multi-head attention layer of the decoder to guide our
constrained decoding approach.

By applying the multi-head attentions to the HGBS algorithm, we follow the steps below:

• S1: at each decoding step, we retrieve the attention weight distribution at the current time
step t;

• S2: multiple weight distributions from the multi-head attention are averaged to obtain one
single attention distribution;

• S3: taking a target constraint c as a candidate to start new constraints in the beam, we
derive the source-word positions of its corresponding source constraint;

• S4: we sum up the probabilities of all links to the source word positions in S3. The sum is
denoted as pA;

• S5: if pA > pth, where pth is a pre-defined threshold, then put c in the beam to start a
new constraint.

• S6: loop from S3 to S6 until all available target constraints are traversed.

From Algorithm 1 and the above steps, the source-side information derived from the multi-
head attention mechanism acts as a filter to remove those constraints that are not necessary to
expand the hypothesis at the current time step t. The source-side alignment information helps
place constraints in more reasonable positions. In this way, a number of hypotheses in GBS are
pruned, and the search space decreases significantly.

4 Experiments

4.1 Translation Tasks
In our view, the most interesting finding in Hokamp and Liu (2017) is that GBS-based con-
strained decoding has a significant role to play in domain adaptation via terminology, which is
a very important issue in application scenarios in which the translation process has to comply
with specific terminology and/or style guides (Chatterjee et al., 2017).

Therefore, in order to compare the proposed HGBS method with GBS, we focus in our
experiments on the domain adaptation task for constrained decoding via terminology. We use
WMT English–German (EN-DE) and Chinese–English (ZH-EN) translation tasks to perform
the comparison experiments.
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4.2 Data
We use the same data settings for the domain adaptation experiment as in Hokamp and Liu
(2017) in terms of the EN-DE task:

• the training corpus consists of 4.4 Million segments from Europarl (Koehn, 2005) and
CommonCrawl (Smith et al., 2013);

• for the target domain data, the Autodesk Post-Editing corpus (Zhechev, 2012) from the
domain of software localisation is used, which is quite different from the WMT data. The
corpus is divided into 100,000 training sentences and 1,000 test sentences. Constraints
are extracted automatically using PMI between source and target n-grams. The maximum
length of a constraint or terminology is set to 5-gram as in Hokamp and Liu (2017).

For the ZH-EN translation task, in terms of the training data and testing data,

• we use LDC corpora to train the general domain Transformer, which consists of 1.25 Mil-
lion segments;∗ Most sentences in this corpus come from the News domain.

• for the target domain data, we also use the Autodesk Post-Editing corpus. 159,816 sen-
tences are extracted as the training set for PMI and constraint extraction. An additional
1,000 sentences are extracted as the test set for our constrained Transformer experiment.
The maximum length for PMI constraint extraction is set to 5-grams.

All English and German sentences are preprocessed using tools from Moses (Koehn et al.,
2007). Chinese sentences are segmented into words using Jieba,† a popular Python toolkit for
Chinese word segmentation. Finally, the parallel pre-processed data are segmented to subwords
by applying Byte Pair Encoding (Sennrich et al., 2016b), which is capable of encoding open
vocabularies with a compact symbol vocabulary of variable-length subword units.

4.3 Systems
We use the Transformer model in the open source toolkit THUMT as our baseline sys-
tem (Zhang et al., 2017).‡ For the constrained Transformer model, we first reimplement the
GBS method under Transformer model, which we call GBS-T, and we then apply our HGBS
algorithm to GBS-T to improve its decoding speed, which we call HGBS-T. The evaluation
metrics are case-insensitive BLEU and METEOR.

In all our experiments, we employ the base Transformer configuration with embedding
size and hidden size both 512, 6 encoder and decoder layers, 8 attention heads, the standard
ReLu activation function and sinusoidal positional embedding, maximum sentence length 80,
batch size 4096 tokens, beam size 10. The vocabulary sizes in EN-DE are 80,711 for English
and 88,990 for German. The vocabulary sizes in ZH-EN are 30,568 for Chinese and 24,585 for
English. The maximum number of constraints in a sentence is 6, and the alignment threshold
pth is set to 0.1.§

4.4 Results
Table 2 shows the results of three Transformer systems in terms BLEU and METEOR score on
two translation tasks. From Table 2 we can see that:
∗The segments are extracted from LDC2003E07, LDC2003E14, LDC2004T07, LDC2005E83, LDC2005T06,

LDC2006E24, LDC2006E34, LDC2006E85, LDC2006E92, LDC2007E87, LDC2007E101, LDC2007T09,
LDC2008E40, LDC2008E56, LDC2009E16 and LDC2009E95.
†https://github.com/fxsjy/jieba
‡https://github.com/thumt/THUMT
§Our implementation of GBS-T and HGBS-T is available at https://github.com/gdxie1/THUMT-GBS.

git
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System
EN-DE ZH-EN

BLEU METEOR BLEU METEOR
Baseline 34.82 0.29 5.94 0.12
GBS-T 37.92* 0.33* 11.38* 0.23*

HGBS-T 37.13* 0.33* 11.43* 0.22*

Table 2: Comparison of three Transformer systems. ∗ indicates a significantly better result
compared to the Baseline.

• GBS-T significantly outperforms the baseline on the EN-DE task by absolute 3.10 (8.9%)
points and 0.04 (13.8%) points in terms of BLEU and METEOR score, respectively, and on
the ZH-EN task by absolute 5.44 points and 0.11 points in terms of BLEU and METEOR
score. The low Baseline score on ZH-EN confirms that the domain of the Autodesk data
is significantly different from that of the LDC data. This big improvement also shows that
using constrained decoding for domain adaptation via constraints is a feasible solution for
the scenario of low-resource domain translation.

• HGBS underperforms GBS-T by absolute 0.79 points on EN-DE in terms of BLEU score.
However, we can see that it has the same METEOR score as GBS-T. HGBS-T significantly
outperforms the Baseline on EN-DE in terms of BLEU and METEOR as well, and it has a
comparable performance with GBS-T.

• For ZH-EN, HGBS-T is slightly better than GBS-T in terms of BLEU, and has almost the
same result as GBS-T in terms of METEOR.

From the above observations, we can conclude that (1) our HGBS-T model has a comparable
translation performance to GBS-T in terms of BLEU and METEOR score; (2) our constrained
Transformer model is effective for domain adaptation, especially when the domains of the train-
ing data and testing data are significantly different.

Figure 2: Comparison of decoding time consumption (seconds/constraints)

Figure 2 compares speed as a function of the number of constraints for the EN-DE task.
We divide the sentences into different groups where each sentence in the same group contains
the same number of constraints, and then we average decoding time over all sentences in the
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same group. The numbers on the vertical axis represent the average decoding time, i.e. seconds
per sentence.

We can see that by using source information to prune hypotheses in the GBS, our HGBS
has significantly decreased decoding time, especially when a sentence contains more than 3
constraints. In our experiments, we observed that the averaged hypotheses of each sentence in
GBS-T is 4,887, while our HGBS-T has 3560, so about 30% paths are removed, as shown in
Figure 3, where we can see that there is a significant decrease in the number of hypotheses in
the beam that need to be expanded. As a result, in this figure, when constraints are up to 6, the
average saving in decoding time can up to 20% compared to GBS.

Figure 3: Comparison of number of hypotheses expanded in the decoding

4.5 Analysis
From the above experimental results, we can see that it is feasible to use the multi-head
attention-guided source information for GBS in Transformer to save decoding time while main-
taining comparable translation performance. To obtain this result, we carried out some exper-
iments to look into the multi-head attention mechanism and layers of Transformer to optimise
and determine some key hyper-parameters, such as the threshold pth, averaging weights of the
multi-head attention of the last layer to provide alignment information. In this section, we
describe these experiments and provide an analysis of the results obtained.

4.5.1 Effects of Attention on Different Thresholds
Table 3 shows how the performance of HGBS changes with different settings for the alignment
threshold pth on the EN-DE task. The BLEU scores for HGBS-T are based on applying different
thresholds pth on the same test set in our experimental setting.

From Table 3, we can see that:

• our HGBS-T model achieves similar performance to GBS-T when pth is set to small
values. It can be seen that with the increase in threshold, translation quality decreases
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Baseline 34.82

GBS-T 37.92

HGBS-T 37.13 36.40 36.16 35.64 35.11 34.65 34.92 35.11 35.45

Threshold pth 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Table 3: Performance changes with different thresholds at Layer 5

significantly. When pth = 0.6, HGBS-T drops to almost the same performance as the
baseline.

• based on the above observations, we set pth = 0.1 in HGBS-T for all our experiments.

4.5.2 How Word Alignment Quality Affects BLEU Score
In our HGBS method, the placement of a constraint is guided by the multi-head attention infor-
mation. Therefore, we infer that the quality of word alignment between the target and source
is closely correlated with translation quality, i.e. a better quality word alignment will produce
a higher quality of translations. In this section, we look into this issue by evaluating the word
alignment of multi-head attention mechanism and measuring their correlations.

Figure 4: Correlations of the alignment error and BLEU score

To evaluate the quality of the word alignment from the multi-head attention, we use the
word alignment links generated from FastAlign (Dyer et al., 2013) as the “Ground Truth”. Since
the word alignment from the multi-head attention is a probability distribution of the time step
t in the decoder against all source words, we use Mean Square Error (MSE) as the metric to
evaluate the alignment quality as in Equation (1):

Emse(A,α) =
1

T

T∑
t=1

It∑
i=1

(Ati − αti)2 (1)
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whereA is the alignment from FastAlign, α is the alignment from the multi-head attention. T is
the total time steps for the target sequence, and It is the number of alignment links of time step
t against the source words. The alignment model of FastAlign is trained with the same EN-DE
training corpus as in Section 4.2. Table 4 shows the relationship between the alignment error
Emse and the BLEU score with different thresholds for heads at Layer 5. “Relative BLEU”
indicates that we scale the values of the column “BLEU” by subtracting an offset of 34 so that
we can plot all curves in one figure in order to compare their trends. In Figure 4, the top-left
curve shows the changes of relative BLEU against the changes of alignment error (bottom-left)
at each head of Layer 5 when the threshold is set to 0.1. The top-right curve shows the changes
of relative BLEU against the changes of alignment error (bottom-right) at each head of Layer 5
when the threshold is set to 0.2.

Layer Head Threshold Alignment Error Emse BLEU Relative BLEU

5 0 0.1 0.707 36.33 2.33
5 1 0.1 0.825 36.22 2.22
5 2 0.1 0.832 36.10 2.10
5 3 0.1 0.704 36.88 2.88
5 4 0.1 0.819 36.19 2.19
5 5 0.1 0.618 37.14 3.14
5 6 0.1 0.748 36.25 2.25
5 7 0.1 0.833 36.09 2.09

5 0 0.2 0.708 36.23 2.23
5 1 0.2 0.821 35.46 1.46
5 2 0.2 0.822 35.11 1.11
5 3 0.2 0.700 36.48 2.48
5 4 0.2 0.815 35.76 1.76
5 5 0.2 0.616 36.81 2.81
5 6 0.2 0.745 35.43 1.43
5 7 0.2 0.830 35.70 1.70

Table 4: Alignment Error and BLEU score of different heads at Layer 5 of Transformer model

We can see that for “threshold:0.1” and “threshold:0.2”, the Pearson coefficients are−0.89
and −0.86, respectively, and the Spearman’s coefficients are −0.98 and −0.76, respectively,
which show that the BLEU score of the translations has high negative linear and monotonic
correlations with the alignment errors, i.e. if the quality of word alignment is better, the transla-
tion quality is better. From this observation and analysis, regarding the proposed HGBS method,
the hypothesis will be that if we can improve the quality of word alignment of multi-head atten-
tion mechanism, we would further improve translation quality and better guide the placement
of constraints during the decoding to further improve translation quality.

5 Refining the model with alignmental guiding training

In order to verify the effect of alignment (or attention) on our HGBS method, we refined the
Transformer model using Guided Alignment Training (Chen et al., 2016). Currently the general
Transformer model normally uses 6 layers and 8 heads in each layer. We average all the atten-
tion of the 6 layers and 8 heads as a whole attention value, as the Ati in Equation (1). Similar to
Chen et al. (2016), we combine decoder cost and alignment cost to build the new loss function
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H(y, x,A, α) in Equation (2):

H(y, x,A, α) = HD(y, x) + ωEmse(A,α) (2)

Here HD(y, x) is the normal decoder cost of the Transformer model, and ω is the weights for
Emse. In our experiments, we set ω as 0.05 and obtain the best performance. Our refining pro-
cess is as follows: first we train a normal Transformer NMT model. Then we use H(y, x,A, α)
as our model loss function to continue to train the model beginning from the best checkpoint.
During training, all the parameters will be updated so the model will gradually output better
multi-head alignment attentions. After about 200,000 more iterations, we obtain a new model
refined from the alignment information. We perform this experiments in the previous section
again and obtain the results shown in Table 5. We insert the previous result in the the table for
convenience. From that table, we can see that the refined baseline system’s performance is even

System
BLEU of EN-DE

not refined refined
Baseline 34.82 34.85
GBS-T 37.92 38.16*

HGBS-T 37.13 38.12*

Table 5: Comparison of three Transformer systems after refining training. ∗ indicates a better
result compared to the unrefined system.

better than the original baseline system. When we apply the GBS method and HGBS method on
the refined baseline model, both produce higher BLEU scores. The GBS method obtains 0.24
increment and HGBS obtains 0.99 increment. Comparing with the refined baseline, the GBS
obtains 3.31 increment and HGBS almost achieves the same performance as GBS. However on
the unrefined system, HGBS obtains a lower score of 37.13 than the GBS’s 37.92.

6 Conclusions and Future Work

In this paper, we first reimplement and investigate the grid beam search (GBS) method based on
the Transformer model, and then propose heuristic GBS – a source-informed heuristic method
guided by the multi-head attention mechanism – to speed up decoding while maintaining com-
parable translation performance. We compare our proposed method with unconstrained Trans-
former and GBS Transformer via a range of experiments on domain adaptation translation tasks,
and demonstrate that our model significantly outperforms the basic Transformer model in terms
of BLEU and METEOR, and at the same time significantly prunes up to 30% hypotheses and
saves up to 20% decoding time with comparable results. Experimental results also show that
our method is more practical for application to the scenario of low-resource domain adaptation
translation compared with GBS.

In future work, we will further optimise the proposed HGBS method in terms of trans-
lation quality, decoding time and reducing the complexity by better exploiting the multi-head
alignment information.
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