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1 Tutorial Introduction

Text generation has played an important role in
various applications of natural language process-
ing (NLP), such as paraphrasing, summarization,
and dialogue systems. With the development of
modern deep learning techniques, text generation
is usually accomplished by a neural decoder (e.g.,
a recurrent neural network or a Transformer),
which generates a word at a time conditioned on
previous generated words. The decoder can be fur-
ther conditioned on some source information, such
as a source language sentence in machine transla-
tion, or a previous utterance in dialogue systems.

In recent studies, researchers are paying in-
creasing attention to modeling and manipulating
the style of the generation text, which we call styl-
ized text generation in this tutorial. The goal is to
not only model the content of text (in traditional
text generation), but also control some “style” of
the text, for example, the persona of a speaker in a
dialogue (Li et al., 2016), or the sentiment of prod-
uct reviews (Hu et al., 2017).

Stylized text generation is related to various ma-
chine learning techniques, for example, embed-
ding learning techniques to represent style (Fu
et al., 2018), adversarial learning and reinforce-
ment learning with cycle consistency to match
“content” but to distinguish different styles (Hu
et al., 2017; Xu et al., 2018; John et al., 2019);
very recent work is even able to disentangle latent
features in an unsupervised way (Xu et al., 2019).

In this tutorial, we will provide a comprehen-
sive literature review on stylized text generation.
We start from the definition of style and different
settings of stylized text generation, illustrated with
various applications.

In the second part, we will describe style-

conditioned text generation. In this category, style
serves as a certain type of source information,
which the decoder is conditioned on. We de-
scribe three types of approaches: (1) embedding-
based techniques that capture the style informa-
tion by real-valued vectors, which can be used
to condition a language model (Tikhonov and
Yamshchikov, 2018) or concatenated with the in-
put to a decoder (Li et al., 2016; Vechtomova
et al., 2018) (2) approaches that encode both style
and content in the latent space (Shi et al., 2019a;
Yang et al., 2017; Li et al., 2020). We will dis-
cuss techniques that structure latent space to en-
code both style and content, and include Gaussian
Mixture Model Variational Autoencoders (GMM-
VAE) (Shi et al., 2019a; Wang et al., 2019a; Shi
et al., 2019b), Conditional Variational Autoen-
coders (CVAE) (Yang et al., 2017), and Adversar-
ially Regularized Autoencoders (ARAE) (Li et al.,
2020). (3) approaches with multiple style-specific
decoders (Syed et al., 2019; Chen et al., 2019). We
highlight several applications including persona-
based dialogue generation (Li et al., 2016) and
creative writing (Yang et al., 2017; Tikhonov and
Yamshchikov, 2018; Vechtomova et al., 2018).

Next, we will introduce evaluation methods for
style-conditioned text generation. We will present
the current practice in the literature, involving both
human evaluation and automatic metrics. A few
important evaluation aspects include the success
of being in the target style, the preservation of con-
tent information, as well as language fluency in
general.

In the third part, we will focus on style-transfer
text generation. Given an input sentence of a cer-
tain style, the goal of style transfer is to synthesize
a new sentence that has the same content but with
different styles. Particularly, style-transfer text
generation can be categorized into three settings:
(1) Parallel-supervised style transfer, where a par-
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allel corpus is available (Xu et al., 2012; Rao and
Tetreault, 2018). This is similar to machine trans-
lation, but semi-supervised learning is adopted to
address small-data training (Wang et al., 2019b).
(2) Non-parallel style transfer, where each sen-
tence is annotated by a style label (e.g., positive
or negative sentiment). This setting is the most
explored setting in previous style transfer litera-
ture. We will discuss classification losses to dis-
tinguish different styles (John et al., 2019), and
adversarial losses/cycle consistency to match con-
tent information (Shen et al., 2017). We will
also present an editing-based approach that ed-
its style-specific words and phrases into the de-
sired style (Li et al., 2018). (3) Unsupervised style
transfer, where the entire corpus is unlabeled (no
parallel pairs or style labels). In recent studies,
researchers have applied auxiliary losses (such as
orthogonality penalty) to detect the most prevalent
variation of text in a corpus, and are sometimes
able to accomplish style transfer in a purely unsu-
pervised fashion. Since unsupervised style trans-
fer is new to NLP and less explored, we will also
introduce several studies in the computer vision
domain, bringing future opportunities to text gen-
eration in this setting (Gatys et al., 2016; Chen
et al., 2016).

Next, we will discuss style adversarial text gen-
eration (Zhang et al., 2019). The setting of ad-
versarial attacks is similar to style transfer in that
it aims to change the style classifier’s prediction.
However, the synthesized sentence in this setting
should in fact keep the actual style as humans per-
ceive, but “fool” the style classifier. Thus, it is
known as the adversarial attack. We will dis-
cuss style adversarial generation in the charac-
ter level, the word level, as well as the sentence
level. Techniques include discrete word manipu-
lation and continuous latent space manipulation.

Finally, we will conclude our tutorial by pre-
senting the challenges of stylized text generation
and discussing future directions, such as small-
data training, non-categorical style modeling, and
a generalized scope of style transfer (e.g., control-
ling the syntax as a style (Bao et al., 2019)).

By the end of the tutorial, the audience will have
a systematic view of different settings of stylized
text generation, understand common techniques to
model and manipulate the style of text, and be
able to apply existing approaches to new scenar-
ios that require stylized text generation. Our tuto-

rial also investigates stylized generative models in
non-NLP domains, and thus would inspire future
NLP studies in this direction.

2 Tutorial Outline

PART I: Introduction (20 min)

• Definition of style

• Settings and Problem formulations

• Examples of style (e.g., sentiment, artistic
style, grammatical style)

PART II: Style-Conditioned Text Generation
(50 min)

• Techniques

– Encoding style in embeddings: sequence-
to-sequence models with style embed-
dings, style conditioned language models,
Variational Autoencoder (VAE) with style
embeddings;

– Encoding style and content in latent space:
Conditional Variational Autoencoder
(CVAE) Gaussian Mixture Variational
Autoencoder (GMM-VAE), Adversarially
Regularized Autoencoder (ARAE).

– Models with multiple style-specific de-
coders

• Applications

– Creative text generation (e.g., poetry com-
position)

– Persona and emotion conditioned dialogue
models

– Stylized image caption generation

• Evaluation measures

– Stylistic adherence
– Content preservation
– Language fluency
– Novelty and diversity

PART III: Style-Transfer Text Generation
(60 min)

• Parallel supervised style transfer

– Sequence-to-sequence learning
– Semi-supervised training with limited par-

allel data
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– Applications: Shakespearean–modern En-
glish transfer, formality style transfer

• Non-parallel supervised style transfer

– Auxiliary classification for style modeling
– Adversarial learning for matching content
– Cycle consistency for content matching
– Edit-based style transfer
– Applications: Sentiment, genre and gram-

matical style transfer

• Unsupervised style transfer

– Approaches: Mutual information penal-
ties and correlation penalties for automatic
style detection

– A brief introduction of unsupervised style
transfer in image domain (e.g., color,
shape, angle)

PART IV: Style-Advsersarial Text Generation
(30 minutes)

• Style adversarial vs. style transfer

• Approaches

– Character-level attack
– Word-level attack
– Sentence-level attack

PART IV: Conclusion, Future Work, and Q&A
(20 min)

• Challenges: non-categorical style, small-data
training

• A broader view of “style”: text summariza-
tion/simplification as style transfer, syntax-
semantic disentanglement
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