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Abstract

Unsupervised neural machine translation
(UNMT) has recently achieved remarkable
results for several language pairs. However, it
can only translate between a single language
pair and cannot produce translation results
for multiple language pairs at the same time.
That is, research on multilingual UNMT has
been limited. In this paper, we empirically in-
troduce a simple method to translate between
thirteen languages using a single encoder and
a single decoder, making use of multilingual
data to improve UNMT for all language pairs.
On the basis of the empirical findings, we
propose two knowledge distillation methods
to further enhance multilingual UNMT per-
formance. Our experiments on a dataset with
English translated to and from twelve other
languages (including three language families
and six language branches) show remarkable
results, surpassing strong unsupervised indi-
vidual baselines while achieving promising
performance between non-English language
pairs in zero-shot translation scenarios and
alleviating poor performance in low-resource
language pairs.

1 Introduction

Recently, neural machine translation (NMT) has
been adapted to the unsupervised scenario in which
NMT is trained without any bilingual data. Un-
supervised NMT (UNMT) (Artetxe et al., 2018;
Lample et al., 2018a) requires only monolingual
corpora. UNMT achieves remarkable results by us-
ing a combination of diverse mechanisms (Lample
et al., 2018b) such as an initialization with bilingual
word embeddings, denoising auto-encoder (Vin-
cent et al., 2010), back-translation (Sennrich et al.,
2016a), and shared latent representation. More re-
cently, Lample and Conneau (2019) achieves better

∗Haipeng Sun was an internship research fellow at NICT
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UNMT performance by introducing the pretrained
language model. However, conventional UNMT
can only translate between a single language pair
and cannot produce translation results for multiple
language pairs at the same time (Wang et al., 2020).

Multilingual UNMT (MUNMT) translating mul-
tiple languages at the same time can save substan-
tial training time and resources. Moreover, the
performance of MUNMT in similar languages can
promote each other. Research on MUNMT has
been limited and there are only a few pioneer stud-
ies. For example, Xu et al. (2019) and Sen et al.
(2019) proposed a multilingual scheme that jointly
trains multiple languages with multiple decoders.
However, the performance of their MUNMT is
much worse than our re-implemented individual
baselines (shown in Tables 2 and 3) and the scale
of their study is modest (i.e., 4-5 languages).

In this paper, we empirically introduce an unified
framework to translate among thirteen languages
(including three language families and six language
branches) using a single encoder and single de-
coder, making use of multilingual data to improve
UNMT for all languages. On the basis of these
empirical findings, we propose two knowledge dis-
tillation methods, i.e., self-knowledge distillation
and language branch knowledge distillation, to fur-
ther enhance MUNMT performance. Our experi-
ments on a dataset with English translated to and
from twelve other languages show remarkable re-
sults, surpassing strong unsupervised individual
baselines.This paper primarily makes the following
contributions:

• We propose a unified MUNMT framework to
translate between thirteen languages using a
single encoder and single decoder. This paper
is the first step of multilingual UNMT training
on a large scale of European languages.

• We propose two knowledge distillation meth-
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ods for MUNMT and our proposed knowl-
edge distillation methods consider linguistic
knowledge in the specific translation task.

• Our proposed MUNMT system achieves state-
of-the-art performance on the thirteen lan-
guages. It also achieves promising perfor-
mance in zero-shot translation scenarios and
alleviates poor performance in low-resource
language pairs.

2 Background of UNMT

UNMT can be decomposed into four components:
cross-lingual language model pretraining, denois-
ing auto-encoder, back-translation, and shared la-
tent representations. For UNMT, two monolingual
corpora X1 = {X1

i } and X2 = {X2
i } in two lan-

guages L1 and L2 are given. |X1| and |X2| are the
number of sentences in monolingual corpora {X1

i }
and {X2

i } respectively.

2.1 Cross-lingual Language Model
Pretraining

A cross-lingual masked language model, which can
encode two monolingual sentences into a shared
latent space, is first trained. The pretrained cross-
lingual encoder is then used to initialize the whole
UNMT model (Lample and Conneau, 2019). Com-
pared with previous bilingual embedding pretrain-
ing (Artetxe et al., 2018; Lample et al., 2018a; Yang
et al., 2018; Lample et al., 2018b; Sun et al., 2019),
this pretraining can provide much more cross-
lingual information, causing the UNMT model to
achieve better performance and faster convergence.

2.2 Denoising Auto-encoder

Noise obtained by randomly performing local sub-
stitutions and word reorderings (Vincent et al.,
2010; Hill et al., 2016; He et al., 2016), is added to
the input sentences to improve model learning abil-
ity and regularization. Consequently, the input data
are continuously modified and are different at each
epoch. The denoising auto-encoder model objec-
tive function can be minimized by encoding a noisy
sentence and reconstructing it with the decoder in
the same language:

LD =

|X1|∑
i=1

−logPL1→L1(X
1
i |C(X1

i ))

+

|X2|∑
i=1

−logPL2→L2(X
2
i |C(X2

i )),

(1)

where {C(X1
i )} and {C(X2

i )} are noisy sentences.
PL1→L1 and PL2→L2 denote the reconstruction
probability in language L1 and L2, respectively.

2.3 Back-translation

Back-translation (Sennrich et al., 2016a) plays
a key role in achieving unsupervised transla-
tion that relies only on monolingual corpora in
each language. The pseudo-parallel sentence
pairs {(M2(X1

i ), X
1
i )} and {(M1(X2

i ), X
2
i )} pro-

duced by the model in the previous iteration are
used to train the new translation model. There-
fore, the back-translation objective function can be
optimized by minimizing:

LB =

|X1|∑
i=1

−logPL2→L1(X
1
i |M2(X1

i ))

+

|X2|∑
i=1

−logPL1→L2(X
2
i |M1(X2

i )),

(2)

where PL1→L2 and PL2→L1 denote the translation
probability across the two languages.

2.4 Sharing Latent Representations

Encoders and decoders are (partially) shared be-
tween L1 and L2. Therefore, L1 and L2 must use
the same vocabulary. The entire training of UNMT
needs to consider back-translation between the two
languages and their respective denoising processes.
In summary, the entire UNMT model can be opti-
mized by minimizing:

Lall = LD + LB . (3)

3 Multilingual UNMT (MUNMT)

3.1 Multilingual Pretraining

Motivated by Lample and Conneau (2019), we con-
struct a multilingual masked language model, using
a single encoder. For each language, the language
model is trained by encoding the masked input and
reverting it with this encoder. This pretrained mul-
tilingual language model is used to initialize the
full set of parameters of MUNMT.

3.2 Multilingual UNMT Training

We have established a MUNMT model on N lan-
guages with a single encoder and single decoder.
We denote a sentence in language Lj as Xj

i . For
example, L1 indicates English. |Xj | is the number
of sentences in the corpus Xj = {Xj

i }.
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Figure 1: MUNMT architecture. We take L1 ↔ Lj

time-step as an example. The grey symbols indicate
that the corresponding data are not used or generated
during this time-step.

As Figure 1 shows, the entire training process
of the MUNMT model is performed through the
denoising and back-translation mechanisms, be-
tween English and non-English language pairs, by
minimizing:

LMUNMT = LMD + LMB , (4)

where LMD denotes the denoising function and
LMB denotes the back-translation function.

In the denoising training, noise (in the form of
random token deletion and swapping) is introduced
into the input sentences for any language Lj . The
denoising auto-encoder, which encodes a noisy ver-
sion and reconstructs it with the decoder in the
same language, is optimized by minimizing:

LMD =

N∑
j=1

|Xj |∑
i=1

−logPLj→Lj (X
j
i |C(Xj

i )), (5)

where {C(Xj
i )} is a set of noisy sentences for lan-

guage Lj . PLj→Lj denotes the reconstruction prob-
ability in Lj .

In this paper, we primarily focus on the trans-
lation from English to other languages or from
other languages to English. This is because most
test dataset contains English. In the process of
back-translation training, we only conduct back-
translation from language L1 (English) to other
languages and back-translation from other lan-
guages to language L1. For any non-English
language Lj , the pseudo-parallel sentence pairs
{(M j(X1

i ), X
1
i )} and {(M1(Xj

i ), X
j
i )} are ob-

tained by the previous model in the L1 → Lj

Algorithm 1 The SKD algorithm
Input:

Monolingual training data X1, X2, · · · , XN ;
The pretrained model θ0; Number of steps K

1: Initialize θ ← θ0
2: while Step q ≤ max step K do
3: for j = 1; j < N ; j ++ do
4: Sample batch {Xj

i } from Xj

5: Compute denoising loss LMD

6: Update θ ←optimizer(LMD)
7: end for
8: for j = 2; j < N ; j ++ do
9: Sample batch {X1

i }from X1

10: Compute back-translation loss LMB

11: Randomly select another languageLz and
compute distillation loss LSKD

12: Update θ ←optimizer(LMB + LSKD)
13: Sample batch{Xj

i } from Xj

14: Compute back-translation loss LMB

15: Randomly select another languageLz and
compute distillation loss LSKD

16: Update θ ←optimizer(LMB + LSKD)
17: end for
18: end while

and Lj → L1 direction, respectively. Therefore,
the back-translation objective function can be opti-
mized on these pseudo-parallel sentence pairs by
minimizing:

LMB =

N∑
j=2

|X1|∑
i=1

−logPLj→L1(X
1
i |M j(X1

i ))

+

N∑
j=2

|Xj |∑
i=1

−logPL1→Lj (X
j
i |M

1(Xj
i )),

(6)

where PL1→Lj and PLj→L1 denote the translation
probabilities, in each direction, between any non-
English language and English.

4 Knowledge Distillation for MUNMT

To further enhance the performance of our pro-
posed MUNMT described in Section 3, we pro-
pose two knowledge distillation methods: self-
knowledge distillation (Algorithm 1) and language
branch knowledge distillation (Algorithm 2). Fig-
ure 2 illustrates the architecture of MUNMT and
the proposed knowledge distillation methods.

Generally, during UNMT training, an objective
function LKD is added, to enhance the generaliza-
tion ability of the MUNMT model. The general
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Figure 2: (a) Architecture of MUNMT with self-knowledge distillation; (b) Architecture of MUNMT with lan-
guage branch knowledge distillation. Similar as Figure 1, we take L1 ↔ Lj time-step as an example. The blue
lines denote our proposed knowledge distillation methods are added in the MUNMT training.

MUNMT objective function can be reformulated
as follows:

LMUNMT = LMD + LMB′ ,

LMB′ = (1− α)LMB + αT 2LKD,
(7)

where α is a hyper-parameter that adjusts the
weight of the two loss functions during back-
translation. T denotes the temperature used on the
softmax layer. If the temperature is higher, the prob-
ability distribution obtained would be softer (Hin-
ton et al., 2015).

4.1 Self-knowledge Distillation

On the basis of the existing architecture of
MUNMT, we introduce self-knowledge distilla-
tion (Hahn and Choi, 2019) (SKD) during back-
translation, to enhance the generalization ability
of the MUNMT model, as shown in Figure 2(a).
Unlike Hahn and Choi (2019)’s method, using two
soft target probabilities that are based on the word
embedding space, we make full use of multilingual
information via self-knowledge distillation.

During back-translation, only language Lj sen-
tences M j(X1

i ) are generated before training the
MUNMT model in the Lj → L1 direction. How-
ever, other languages, which have substantial mul-
tilingual information, are not used during this train-
ing. Motivated by this, we propose to introduce
another language Lz (randomly chosen but dis-

tinct from L1 and Lj) during this training. We
argue that the translation from the source sentences
through different paths, L1 → Lj → L1 and
L1 → Lz → L1, should be similar. The MUNMT
model matches not only the ground-truth output
of language Lj sentences M j(X1

i ), but also the
soft probability output of language Lz sentences
M z(X1

i ). The opposite direction is similar. There-
fore, this MUNMT model is optimized by minimiz-
ing the objective function:

LMB′ = (1− α)LMB + αT 2LSKD,

LSKD =

N∑
j=2

|X1|∑
i=1

KL(X1(M j(X1
i )), X

1(Mz(X1
i )))

+
N∑

j=2

|Xj |∑
i=1

KL(Xj(M1(Xj
i )), X

j(Mz(Xj
i ))),

(8)

where KL(·) denotes the KL divergence. It is
computed over full output distributions to keep
these two probability distributions similar. For
any languageLj ,X1(M j(X1

i )) andX1(M z(X1
i ))

denote the softened L1 sentence probability dis-
tribution after encoding M j(X1

i ) and M z(X1
i ),

respectively. M j(X1
i ) and M z(X1

i ) were gener-
ated by the previous model in the L1 → Lj and
L1 → Lz directions, respectively. Xj(M1(Xj

i ))

andXj(M z(Xj
i )) denote the softened Lj sentence

probability distribution after encoding M1(Xj
i )
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Algorithm 2 The LBKD algorithm
Input:

Monolingual training data X1, X2, · · · , XN ;
LBUNMT models θLB1 , θLB2 , · · · , θLBM ;
The pretrained model θ0; Number of steps K

1: Initialize θ ← θ0
2: while Step q ≤ max step K do
3: for j = 1; j < N ; j ++ do
4: Sample batch {Xj

i } from Xj

5: Compute denoising loss LMD

6: Update θ ←optimizer(LMD)
7: end for
8: for j = 2; j < N ; j ++ do
9: Sample batch {X1

i }from X1

10: Compute back-translation loss LMB

11: Select LBUNMT language L1 belongs
and compute distillation loss LLBKD

12: Update θ ←optimizer(LMB + LLBKD)
13: Sample batch{Xj

i } from Xj

14: Compute back-translation loss LMB

15: Select LBUNMT language Lj belongs
and compute distillation loss LLBKD

16: Update θ ←optimizer(LMB + LLBKD)
17: end for
18: end while

and M z(Xj
i ), respectively. M1(Xj

i ) and M z(Xj
i )

were generated by the previous model in the Lj →
L1 and Lj → Lz directions, respectively. Note that
zero-shot translation was used to translate language
Lj to language Lz . The direction Lj → Lz was
not trained during MUNMT training.

4.2 Language Branch Knowledge Distillation

We consider thirteen languages: Czech (Cs),
German (De), English (En), Spanish (Es), Esto-
nian (Et), Finnish (Fi), French (Fr), Hungarian

(Hu), Lithuanian (Lt), Latvian (Lv), Italian (It),
Romanian (Ro), and Turkish (Tr), which belong to
three language families including several language
branches (Lewis, 2009) as shown in Figure 3.

As shown in Figure 2(b), we propose knowledge
distillation within a language branch (LBKD), to
improve MUNMT performance through the exist-
ing teacher models. To the best of our knowledge,
this is the first proposal that aims to distill knowl-
edge within a language branch. As the number
of languages increases, the cost of training time
and resources to train an individual model on any
two languages increases rapidly. An alternative
knowledge distillation method within a language
branch can avoid this prohibitive computational
cost. Because languages in the same language
branch are similar, we first train small multilingual
models across all languages in the same language
branch (LBUNMT) before training MUNMT. The
LBUNMT model trained in the same language
branch performed better than the single model be-
cause similar languages have a positive interaction
during the training process as shown in Tables 2 and
3. Therefore, the distilled information of LBUNMT
is used to guide the MUNMT model during back-
translation. The MUNMT model matches both the
ground-truth output and the soft probability output
of LBUNMT. Therefore, this MUNMT model is
optimized by minimizing the objective function:

LMB′ = (1− α)LMB + αT 2LLBKD,

LLBKD =

N∑
j=2

|X1|∑
i=1

KL(X1(M j(X1
i )), LB

1(M j(X1
i )))

+

N∑
j=2

|Xj |∑
i=1

KL(Xj(M1(Xj
i )), LB

j(M1(Xj
i ))),

(9)

where X1(M j(X1
i )) and LB1(M j(X1

i )) denote



3530

the softened L1 sentence probability distribution of
the MUNMT and LBUNMT models, respectively,
after encoding M j(X1

i ) generated by the previ-
ous MUNMT model in the L1 → Lj direction.
Xj(M1(Xj

i )) and LBj(M1(Xj
i )) denote the soft-

ened Lj sentence probability distribution of the
MUNMT and LBUNMT models, respectively, af-
ter encoding M1(Xj

i ) generated by the previous
MUNMT model in the Lj → L1 direction.

5 Experiments

5.1 Datasets

To establish an MUNMT system, we consid-
ered 13 languages from WMT monolingual news
crawl datasets: Cs, De, En, Es, Et, Fi, Fr, Hu,
It, Lt, Lv, Ro, and Tr. For preprocessing, we
used the Moses tokenizer (Koehn et al., 2007).
For cleaning, we only applied the Moses script
clean-corpus-n.perl to remove lines in the
monolingual data containing more than 50 words.
We then used a shared vocabulary for all languages,
with 80,000 sub-word tokens based on BPE (Sen-
nrich et al., 2016b). The statistics of the data are
presented in Table 1. For Cs,De,En, we randomly
extracted 50M monolingual news crawl data after
cleaning; For other languages, we used all news
crawl data after cleaning as shown in Table 1.

Language Sentences Words Sub-words

Cs 50.00M 860.36M 1.16B
De 50.00M 887.37M 1.19B
En 50.00M 1.15B 1.32B
Es 36.33M 1.01B 1.19B
Et 3.00M 51.39M 101.43M
Fi 15.31M 189.39M 359.78M
Fr 50.00M 1.19B 1.38B
Hu 34.35M 708.13M 1.03B
It 30.82M 755.56M 911.51M
Lt 0.34M 6.38M 14.64M
Lv 8.60M 172.56M 281.54M
Ro 8.92M 207.07M 279.95M
Tr 9.14M 153.03M 254.70M

Table 1: Statistics of monolingual corpora.

We report the results for WMT newstest2013 for
Cs-En, De-En, Es-En, and Fr-En. We can evaluate
the translation performance between pairs of non-
English languages because newstest2013 includes
these five languages parallel to each other. For
other language pairs, we chose the newest WMT
newstest set. That is, we reported the results on
WMT newstest2019 for Fi-En and Lt-En; WMT

newstest2018 for Et-En and Tr-En; WMT new-
stest2017 for Lv-En; WMT newstest2016 for Ro-
En; and WMT newstest2009 for Hu-En and It-En.
Note that the versions of newstest2019 on Fi/Lt→
En and En→ Fi / Lt are different. We chose the
corresponding newstest2019 for each direction.

5.2 Language Model and UNMT Settings

We used a transformer-based XLM toolkit to train a
multilingual masked language model and followed
the settings used in Lample and Conneau (2019):
six layers were used for the encoder. The dimen-
sion of hidden layers was set to 1024. The Adam
optimizer (Kingma and Ba, 2015) was used to op-
timize the model parameters. The initial learning
rate was 0.0001, β1 = 0.9, and β2 = 0.98.

We used the same toolkit and followed the set-
tings of UNMT used in (Lample and Conneau,
2019): six layers were used for the encoder and de-
coder. The batch size was set to 2000 tokens. The
other parameters were the same as those used for
training language model. For our proposed knowl-
edge distillation method, α was set to 0.1 and T
was set to 2 (the parameters are empirically selected
by small-scale experiments and most of the settings
achieved good results). The cross-lingual language
model was used to pretrain the encoder and decoder
of the whole UNMT model. All monolingual data,
described in Table 1, were used in the pretraining
and MUNMT training phase. The parameters of
the multilingual and single models were the same.

For evaluation, we used the case-sensitive
BLEU scores computed by the Moses script
multi-bleu.perl. We executed a single
model (two languages) for 60,000 iterations, a
small multilingual model (three to five languages)
for 30,000 iterations, and a large multilingual
model (13 languages) for 15,000 iterations. Eight
V100 GPUs were used to train all UNMT models.
The single model was trained for approximately
two days; the multilingual model (13 languages)
costs approximately six days since 13 languages
participated in the training.

5.3 Main Results

Tables 2 and 3 present the detailed BLEU scores
of all systems on the English and non-English lan-
guage pairs, in each direction1. Our observations

1The translation quality of pretrained model was not pre-
sented in the Tables 2 and 3. The result was poor because the
pretrained model (cross-lingual language model) was trained
within an encoder. The encoder and decoder of UNMT was
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Corpus SNMT Sen et al. (2019) Xu et al. (2019) SM LBUNMT MUNMT SKD LBKD

En-Cs 19.20 - 6.79 14.54 14.54 14.40 14.89 15.47
En-De 20.30 8.09 13.25 18.26 18.26 17.58 18.47 19.28
En-Es 30.40 14.82 20.43 25.14 25.40 25.05 25.61 26.79
En-Et 25.20 - - 14.86 15.02 14.09 15.03 15.62
En-Fi 27.40 - - 9.87 9.99 9.75 10.70 10.57
En-Fr 30.60 13.71 20.27 26.02 26.36 25.84 26.45 27.78
En-Hu - - - 11.32 11.40 10.90 11.64 12.03
En-It - - - 24.19 24.30 23.80 24.69 25.52
En-Lt 20.10 - - 0.79 8.29 10.07 11.15 11.11
En-Lv 21.10 - - 1.02 11.55 13.09 13.90 14.33
En-Ro 28.90 - - 29.44 29.58 28.82 29.65 31.28
En-Tr 20.00 - - 11.87 11.87 12.41 13.24 13.83

Average - - - 15.61 17.21 17.15 17.95 18.63

Table 2: BLEU scores of all models on the English to non-English language pairs.
Note: The first column shows best-performed (till 2019) BLEU scores of supervised NMT (SNMT) systems reported in the
corresponding WMT news translation task (http://matrix.statmt.org). The second and third column show BLEU
scores reported in the corresponding papers. SM shows the UNMT single model on these two languages (our baseline);
LBUNMT shows the multilingual model across all languages in the same language branch; MUNMT shows the multilingual
model across all languages; SKD shows the multilingual model with self-knowledge distillation across all languages; LBKD
shows the multilingual model with language branch knowledge distillation across all languages. Note that the results for En-Ro
are evaluated on the dataset with diacritics removed in the reference text for all our implemented systems.

Corpus SNMT Sen et al. (2019) Xu et al. (2019) SM LBUNMT MUNMT SKD LBKD

Cs-En 27.10 - 11.56 20.62 20.62 20.09 21.05 21.25
De-En 28.40 11.94 16.46 21.31 21.31 21.95 22.54 22.81
Es-En 31.40 15.45 20.35 25.53 25.77 25.37 26.15 26.59
Et-En 30.90 - - 19.48 20.30 19.60 20.95 21.31
Fi-En 33.00 - - 7.62 7.68 7.19 7.92 7.80
Fr-En 32.20 14.47 19.87 25.86 26.02 25.41 26.07 26.48
Hu-En - - - 14.48 14.86 14.54 15.16 15.34
It-En - - - 24.33 24.87 24.77 25.30 25.35
Lt-En 36.30 - - 1.72 11.00 14.04 15.31 15.84
Lv-En 21.90 - - 0.95 12.75 14.90 15.49 15.33
Ro-En 35.20 - - 28.52 29.57 28.38 29.58 30.18
Tr-En 28.00 - - 12.99 12.99 15.65 16.85 17.35

Average - - - 16.95 18.98 19.32 20.20 20.47

Table 3: BLEU scores of all models on the non-English to English language pairs.

are as follows:
1) Our proposed LBUNMT model trained in

the same language branch performed better than
the single model (SM) because similar languages
have a positive interaction during the training pro-
cess. Moreover, SM performed very poorly on low-
resource language pairs such as En-Lt and En-Lv
in the Baltic language branch.

2) Our proposed MUNMT model trained in all
languages significantly outperformed the previous
work (Sen et al., 2019; Xu et al., 2019) by 4∼12
BLEU scores. Moreover, the MUNMT model
could alleviate the poor performance achieved with

initialized with the same parameters of pretrained language
model (just an encoder).

low-resource language pairs, such as En-Lt and
En-Lv. However, the performance of MUNMT is
slightly worse than SM in some language pairs.

3) Our proposed knowledge distillation meth-
ods outperformed the original MUNMT model
by approximately 1 BLEU score. Moreover, our
proposed MUNMT with knowledge distillation
performed better than SM in all language pairs
with fewer training iterations. Regarding our two
proposed methods, LBKD achieved better perfor-
mance since it could obtain much more knowledge
distilled from LBUNMT model.

4) There is a gap between the performance of
our proposed MUNMT model and that of the su-

http://matrix.statmt.org


3532

pervised NMT systems. To bridge this gap, relying
solely on monolingual training data, is worthy of
being studied in the future.

6 Discussion

6.1 Zero-shot Translation Analysis
We also studied the zero-shot translation accuracy
of the MUNMT model. Although MUNMT could
be trained on all translation directions (ordered lan-
guage pairs), it would require an extremely long
training time. Our proposed MUNMT model was
trained in 24 translation directions (all English
and non-English language pairs, in each direction),
whereas 156 translation directions exist. As the
number of languages increases, the number of trans-
lation directions increases quadratically. Therefore,
zero-shot translation accuracy is important to the
MUNMT model.

Methods → Cs De Es Fr
Xu et al. (2019)

Cs

- 11.16 11.29 10.61
Sen et al. (2019) - - - -
MUNMT - 11.91 15.22 14.66
LBKD - 13.16 16.63 16.28
SKD - 16.96 20.52 20.14

Xu et al. (2019)

De

10.52 - 13.68 9.45
Sen et al. (2019) - - 7.40 6.78
MUNMT 10.56 - 16.15 15.85
LBKD 11.53 - 17.27 16.96
SKD 14.58 - 20.20 20.61

Xu et al. (2019)

Es

8.32 11.20 - 24.13
Sen et al. (2019) - 4.78 - 13.92
MUNMT 10.04 11.87 - 21.90
LBKD 10.86 12.98 - 23.05
SKD 13.63 16.62 - 27.04

Xu et al. (2019)

Fr

8.89 11.24 23.88 -
Sen et al. (2019) - 4.59 13.87 -
MUNMT 9.77 11.70 22.30 -
LBKD 10.48 12.67 22.65 -
SKD 13.04 16.31 25.92 -

Table 4: BLEU scores of the MUNMT model between
pairs of non-English languages. The first two rows of
each block are the reported BLEU scores from the cor-
responding papers.

Table 4 shows the performance of translation
between non-English language pairs in the zero-
shot translation scenario. Note that Xu et al. (2019)
(2019) shows the results of direct translation be-
tween the two languages, not the result of zero-shot
translation. Compared with previous works, our
MUNMT model outperformed the previous sys-
tems in almost all translation directions, particu-

larly the direct translation results reported in Xu
et al. (2019). Compared with the original MUNMT
model, our proposed knowledge distillation meth-
ods further improved the performance of zero-shot
translation. Regarding our two proposed methods,
SKD significantly outperformed LBKD by approxi-
mately 3 BLEU scores since the third language was
introduced during SKD translation training for two
language pairs, achieving much more cross-lingual
knowledge.

6.2 Further Training (Fine-tuning) Analysis

To better assess the effectiveness of our proposed
MUNMT model, we further trained the MUNMT
and LBKD model individually on each language
pair for 15,000 iterations. As shown in Tables 5 and
6, after further training, the model outperformed
the original single model on each language pair
by approximately 4 BLEU scores. Actually, the
number of iterations of the whole process (includ-
ing training the MUNMT model) is half that of the
original single model. This demonstrates that our
proposed MUNMT model is a robust system and
contains substantial cross-lingual information that
could improve translation performance.

Corpus SM MUNMT +FT LBKD +FT

En-Cs 14.54 14.40 15.79 15.47 15.93
En-De 18.26 17.58 19.57 19.28 20.00
En-Es 25.14 25.05 27.59 26.79 27.80
En-Et 14.86 14.09 16.62 15.62 17.21
En-Fi 9.87 9.75 11.05 10.57 11.58
En-Fr 26.02 25.84 28.56 27.78 28.62
En-Hu 11.32 10.90 12.77 12.03 13.12
En-It 24.19 23.80 25.25 25.52 25.98
En-Lt 0.79 10.07 10.92 11.11 11.22
En-Lv 1.02 13.09 14.33 14.33 15.17
En-Ro 29.44 28.82 32.38 31.28 32.43
En-Tr 11.87 12.41 14.78 13.83 15.30

Average 15.61 17.15 19.13 18.63 19.53

Table 5: The +FT column shows BLEU scores from
further training of the MUNMT and LBKD model on
the English to non-English language pairs. The other
columns show results from Table 2.

7 Related Work

Multilingual NMT has attracted much attention in
the machine translation community. Dong et al.
(2015) first extended NMT from the translation of
a single language pair to multiple language pairs,
using a shared encoder and multiple decoders and
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Corpus SM MUNMT +FT LBKD +FT

Cs-En 20.62 20.09 21.50 21.25 22.17
De-En 21.31 21.95 22.41 22.81 23.07
Es-En 25.53 25.37 26.24 26.59 26.78
Et-En 19.48 19.60 21.61 21.31 22.61
Fi-En 7.62 7.19 8.06 7.80 8.34
Fr-En 25.86 25.41 26.30 26.48 26.76
Hu-En 14.48 14.54 15.99 15.34 16.07
It-En 24.33 24.77 25.54 25.35 25.86
Lt-En 1.72 14.04 15.27 15.84 16.86
Lv-En 0.95 14.90 15.57 15.33 15.87
Ro-En 28.52 28.38 29.61 30.18 30.39
Tr-En 12.99 15.65 18.47 17.35 19.48

Average 16.95 19.32 20.55 20.47 21.19

Table 6: The +FT column shows BLEU scores from
further training of the MUNMT and LBKD model on
the non-English to English language pairs. The other
columns show results from Table 3.

multiple attention mechanisms, for each language.
Luong et al. (2016) translated multiple source lan-
guages to multiple target languages using a combi-
nation of multiple encoders and multiple decoders.
Firat et al. (2016) used a shared attention mecha-
nism but multiple encoders and decoders for each
language. Ha et al. (2016) and Johnson et al. (2017)
proposed a simpler method to use one encoder
and one decoder to translate between multiple lan-
guages. Recently, many methods (Lakew et al.,
2018; Platanios et al., 2018; Sachan and Neubig,
2018; Blackwood et al., 2018; Lu et al., 2018;
Wang et al., 2019a; Aharoni et al., 2019; Wang
et al., 2019b; Wang and Neubig, 2019) have been
proposed to boost multilingual NMT performance.
In particular, Tan et al. proposed a knowledge dis-
tillation method (Tan et al., 2019b) and a language
clustering method (Tan et al., 2019a) to improve
the performance of multilingual NMT. Ren et al.
(2018) propose a triangular architecture to tackle
the problem of low-resource pairs translation by
introducing another rich language.

To further tackle the problem of low-resource
pairs translation, UNMT (Artetxe et al., 2018; Lam-
ple et al., 2018a) has been proposed, using a combi-
nation of diverse mechanisms such as initialization
with bilingual word embeddings, denoising auto-
encoder (Vincent et al., 2010), back-translation
(Sennrich et al., 2016a), and shared latent repre-
sentation. Lample et al. (2018b) concatenated two
bilingual corpora as one monolingual corpus, and
used monolingual embedding pretraining in the ini-
tialization step, to achieve remarkable results with

some similar language pairs. Lample and Con-
neau (2019) achieved better UNMT performance
by introducing a pretrained language model. Sun
et al. (2019, 2020) proposed to train UNMT with
cross-lingual language representation agreement,
to further improve UNMT performance. More-
over, an unsupervised translation task that evalu-
ated in the WMT19 news translation task (Barrault
et al., 2019) attracted many researchers to partici-
pate (Marie et al., 2019; Li et al., 2019).

For Multilingual UNMT, Xu et al. (2019) ex-
ploited multiple auxiliary languages for jointly
boosting UNMT models via the Polygon-Net
framework. Sen et al. (2019) proposed an MUNMT
scheme that jointly trains multiple languages with
a shared encoder and multiple decoders. In con-
trast with their use of multiple decoders, we have
constructed a simpler MUNMT model with one en-
coder and one decoder. Further, we have extended
the four or five languages used in their work to thir-
teen languages, for training our MUNMT model.

8 Conclusion and Future Work

In this paper, we have introduced a unified frame-
work, using a single encoder and decoder, for
MUNMT training on a large scale of European
languages. To further enhance MUNMT perfor-
mance, we have proposed two knowledge distil-
lation methods. Our extensive experiments and
analysis demonstrate the effectiveness of our pro-
posed methods. In the future, we intend to extend
the work to include language types such as Asian
languages. We will also introduce other effective
methods to improve zero-shot translation quality.
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Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine trans-
lation (WMT19). In WMT, pages 1–61, Florence,
Italy.

Graeme Blackwood, Miguel Ballesteros, and Todd
Ward. 2018. Multilingual neural machine transla-
tion with task-specific attention. In COLING, pages
3112–3122, Santa Fe, New Mexico, USA.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for multi-
ple language translation. In ACL, pages 1723–1732,
Beijing, China.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio.
2016. Multi-way, multilingual neural machine
translation with a shared attention mechanism. In
NAACL, pages 866–875, San Diego, California.

Thanh-Le Ha, Jan Niehues, and Alexander H. Waibel.
2016. Toward multilingual neural machine trans-
lation with universal encoder and decoder. CoRR,
abs/1611.04798.

Sangchul Hahn and Heeyoul Choi. 2019. Self-
knowledge distillation in natural language process-
ing. CoRR, abs/1908.01851.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu,
Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual learning
for machine translation. In NIPS, pages 820–828,
Barcelona, Spain.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences
from unlabelled data. In NAACL, pages 1367–1377,
San Diego California, USA.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda B. Viégas, Martin Wattenberg, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2017.
Google’s multilingual neural machine translation
system: Enabling zero-shot translation. TACL,
5:339–351.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR, San
Diego, California.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
ACL, pages 177–180, Prague, Czech Republic.

Surafel Melaku Lakew, Mauro Cettolo, and Marcello
Federico. 2018. A comparison of transformer and
recurrent neural networks on multilingual neural
machine translation. In COLING, pages 641–652,
Santa Fe, New Mexico, USA.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. CoRR,
abs/1901.07291.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2018a. Unsupervised
machine translation using monolingual corpora only.
In ICLR, Vancouver, Canada.

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018b.
Phrase-based & neural unsupervised machine trans-
lation. In EMNLP, pages 5039–5049, Brussels, Bel-
gium.

M Paul Lewis. 2009. Ethnologue: Languages of the
world. SIL international.

Bei Li, Yinqiao Li, Chen Xu, Ye Lin, Jiqiang Liu,
Hui Liu, Ziyang Wang, Yuhao Zhang, Nuo Xu,
Zeyang Wang, Kai Feng, Hexuan Chen, Tengbo Liu,
Yanyang Li, Qiang Wang, Tong Xiao, and Jingbo
Zhu. 2019. The NiuTrans machine translation sys-
tems for WMT19. In WMT, pages 257–266, Flo-
rence, Italy.

Yichao Lu, Phillip Keung, Faisal Ladhak, Vikas Bhard-
waj, Shaonan Zhang, and Jason Sun. 2018. A neural
interlingua for multilingual machine translation. In
WMT, pages 84–92, Belgium, Brussels.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In ICLR, San Juan,
Puerto Rico.

Benjamin Marie, Haipeng Sun, Rui Wang, Kehai Chen,
Atsushi Fujita, Masao Utiyama, and Eiichiro Sumita.
2019. NICT’s unsupervised neural and statistical
machine translation systems for the WMT19 news
translation task. In WMT, pages 294–301, Florence,
Italy.

Emmanouil Antonios Platanios, Mrinmaya Sachan,
Graham Neubig, and Tom Mitchell. 2018. Contex-
tual parameter generation for universal neural ma-
chine translation. In EMNLP, pages 425–435, Brus-
sels, Belgium.

https://doi.org/10.18653/v1/N19-1388
https://openreview.net/pdf?id=Sy2ogebAW
https://openreview.net/pdf?id=Sy2ogebAW
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
https://www.aclweb.org/anthology/C18-1263
https://www.aclweb.org/anthology/C18-1263
https://doi.org/10.3115/v1/P15-1166
https://doi.org/10.3115/v1/P15-1166
https://doi.org/10.18653/v1/N16-1101
https://doi.org/10.18653/v1/N16-1101
http://arxiv.org/abs/1611.04798
http://arxiv.org/abs/1611.04798
http://arxiv.org/abs/1908.01851
http://arxiv.org/abs/1908.01851
http://arxiv.org/abs/1908.01851
http://papers.nips.cc/paper/6469-dual-learning-for-machine-translation
http://papers.nips.cc/paper/6469-dual-learning-for-machine-translation
http://aclweb.org/anthology/N/N16/N16-1162.pdf
http://aclweb.org/anthology/N/N16/N16-1162.pdf
http://arxiv.org/abs/1503.02531
https://transacl.org/ojs/index.php/tacl/article/view/1081
https://transacl.org/ojs/index.php/tacl/article/view/1081
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/P07-2045
https://www.aclweb.org/anthology/P07-2045
https://www.aclweb.org/anthology/C18-1054
https://www.aclweb.org/anthology/C18-1054
https://www.aclweb.org/anthology/C18-1054
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.07291
https://openreview.net/pdf?id=rkYTTf-AZ
https://openreview.net/pdf?id=rkYTTf-AZ
http://aclweb.org/anthology/D18-1549
http://aclweb.org/anthology/D18-1549
https://doi.org/10.18653/v1/W19-5325
https://doi.org/10.18653/v1/W19-5325
https://aclanthology.info/papers/W18-6309/w18-6309
https://aclanthology.info/papers/W18-6309/w18-6309
http://arxiv.org/abs/1511.06114
http://arxiv.org/abs/1511.06114
https://doi.org/10.18653/v1/W19-5330
https://doi.org/10.18653/v1/W19-5330
https://doi.org/10.18653/v1/W19-5330
https://doi.org/10.18653/v1/D18-1039
https://doi.org/10.18653/v1/D18-1039
https://doi.org/10.18653/v1/D18-1039


3535

Shuo Ren, Wenhu Chen, Shujie Liu, Mu Li, Ming
Zhou, and Shuai Ma. 2018. Triangular architecture
for rare language translation. In ACL, pages 56–65,
Melbourne, Australia.

Devendra Sachan and Graham Neubig. 2018. Parame-
ter sharing methods for multilingual self-attentional
translation models. In WMT, pages 261–271, Bel-
gium, Brussels.

Sukanta Sen, Kamal Kumar Gupta, Asif Ekbal, and
Pushpak Bhattacharyya. 2019. Multilingual unsu-
pervised NMT using shared encoder and language-
specific decoders. In ACL, pages 3083–3089, Flo-
rence, Italy.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In ACL, pages 86–96,
Berlin, Germany.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In ACL, pages 1715–1725,
Berlin, Germany.

Haipeng Sun, Rui Wang, Kehai Chen, Masao Utiyama,
Eiichiro Sumita, and Tiejun Zhao. 2019. Unsuper-
vised bilingual word embedding agreement for unsu-
pervised neural machine translation. In ACL, pages
1235–1245, Florence, Italy.

Haipeng Sun, Rui Wang, Kehai Chen, Masao Utiyama,
Eiichiro Sumita, and Tiejun Zhao. 2020. Unsuper-
vised neural machine translation with cross-lingual
language representation agreement. TASLP.

Xu Tan, Jiale Chen, Di He, Yingce Xia, Tao QIN, and
Tie-Yan Liu. 2019a. Multilingual neural machine
translation with language clustering. In EMNLP,
pages 962–972, Hong Kong, China.

Xu Tan, Yi Ren, Di He, Tao Qin, Zhou Zhao, and Tie-
Yan Liu. 2019b. Multilingual neural machine trans-
lation with knowledge distillation. In ICLR, New
Orleans, LA, USA.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie,
Yoshua Bengio, and Pierre-Antoine Manzagol. 2010.
Stacked denoising autoencoders: Learning useful
representations in a deep network with a local de-
noising criterion. JMLR, 11:3371–3408.

Rui Wang, Haipeng Sun, and Sumita Eiichiro Utiyama,
Masao. 2020. A survey of advances and chal-
lenges in unsupervised neural machine translation.
In ANLP, Mito, Japan.

Xinyi Wang and Graham Neubig. 2019. Target condi-
tioned sampling: Optimizing data selection for mul-
tilingual neural machine translation. In ACL, pages
5823–5828, Florence, Italy.

Xinyi Wang, Hieu Pham, Philip Arthur, and Graham
Neubig. 2019a. Multilingual neural machine trans-
lation with soft decoupled encoding. In ICLR, New
Orleans, LA, USA.

Yining Wang, Long Zhou, Jiajun Zhang, Feifei Zhai,
Jingfang Xu, and Chengqing Zong. 2019b. A com-
pact and language-sensitive multilingual translation
method. In ACL, pages 1213–1223, Florence, Italy.

Chang Xu, Tao Qin, Gang Wang, and Tie-Yan Liu.
2019. Polygon-net: A general framework for
jointly boosting multiple unsupervised neural ma-
chine translation models. In IJCAI, pages 5320–
5326.

Zhen Yang, Wei Chen, Feng Wang, and Bo Xu.
2018. Unsupervised neural machine translation with
weight sharing. In ACL, pages 46–55, Melbourne,
Australia.

https://doi.org/10.18653/v1/P18-1006
https://doi.org/10.18653/v1/P18-1006
https://doi.org/10.18653/v1/W18-6327
https://doi.org/10.18653/v1/W18-6327
https://doi.org/10.18653/v1/W18-6327
https://www.aclweb.org/anthology/P19-1297
https://www.aclweb.org/anthology/P19-1297
https://www.aclweb.org/anthology/P19-1297
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://www.aclweb.org/anthology/P19-1119
https://www.aclweb.org/anthology/P19-1119
https://www.aclweb.org/anthology/P19-1119
https://ieeexplore.ieee.org/document/9043536
https://ieeexplore.ieee.org/document/9043536
https://ieeexplore.ieee.org/document/9043536
https://doi.org/10.18653/v1/D19-1089
https://doi.org/10.18653/v1/D19-1089
https://openreview.net/forum?id=S1gUsoR9YX
https://openreview.net/forum?id=S1gUsoR9YX
http://portal.acm.org/citation.cfm?id=1953039
http://portal.acm.org/citation.cfm?id=1953039
http://portal.acm.org/citation.cfm?id=1953039
https://www.anlp.jp/proceedings/annual_meeting/2020/pdf_dir/A5-3.pdf
https://www.anlp.jp/proceedings/annual_meeting/2020/pdf_dir/A5-3.pdf
https://www.aclweb.org/anthology/P19-1583
https://www.aclweb.org/anthology/P19-1583
https://www.aclweb.org/anthology/P19-1583
https://arxiv.org/abs/1902.03499
https://arxiv.org/abs/1902.03499
https://www.aclweb.org/anthology/P19-1117
https://www.aclweb.org/anthology/P19-1117
https://www.aclweb.org/anthology/P19-1117
https://doi.org/10.24963/ijcai.2019/739
https://doi.org/10.24963/ijcai.2019/739
https://doi.org/10.24963/ijcai.2019/739
http://aclweb.org/anthology/P18-1005
http://aclweb.org/anthology/P18-1005

