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Abstract

State-of-the-art argument mining studies have
advanced the techniques for predicting argu-
ment structures. However, the technology
for capturing non-tree-structured arguments is
still in its infancy. In this paper, we focus on
non-tree argument mining with a neural model.
We jointly predict proposition types and edges
between propositions. Our proposed model in-
corporates (i) task-specific parameterization
(TSP) that effectively encodes a sequence of
propositions and (ii) a proposition-level bi-
affine attention (PLBA) that can predict a
non-tree argument consisting of edges. Exper-
imental results show that both TSP and PLBA
boost edge prediction performance compared
to baselines.

1 Introduction

Argument mining, a research area that focuses on
predicting argumentation structures in a text, has
been receiving much attention. To date, efforts in
argument mining were devoted to predicting tree
arguments in which a claim proposition is repre-
sented as a root and premise propositions are repre-
sented as leaves. For example, Stab and Gurevych
(2017) introduced Argument Annotated Essays
(hereafter, Essay), and researchers attempted to
predict tree arguments in the corpus (Eger et al.,
2017; Potash et al., 2017; Kuribayashi et al., 2019).

However, these techniques lack the capability
of dealing with more flexible arguments such as
reason edges where a proposition can have several
parents. To this end, Park and Cardie (2018) pro-
vided a less restrictive argument mining dataset
known as Cornell eRulemaking Corpus (CDCP),
which contains flexible edges (see VALUES (a),
(b), and TESTIMONY (e) in Figure 1). Figure 2
shows a distribution of outgoing edges for Essay
and CDCP. Propositions in CDCP have sparse con-
nections, making the majority of propositions iso-

... [ I'm with Massachusetts on this one. ]a

... [ Repetitive and robo - calls are
annoying and not productive. ]b ... [
Another fact about robo - calls is that
their messages often start in the
middle, ]c ... [ or maybe this is done on
purpose. ]d ... [ When it has happened to
me, I just hang up. ]e ... [ Policies
regulating the number of contacts made
within a specific time period should
include all modes of technology. ]f
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Figure 1: Example graph in the CDCP corpus
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Figure 2: Distribution of the outgoing edges (i.e., Sup-
port/Attack or REASON/EVIDENCE relations) from a
node (proposition) in Essay and CDCP corpora

lated from the others. Besides, a proposition in
Essay has at most one outgoing edge, while that in
CDCP has a variable number of edges (i.e., there
are about 200 propositions which have two or more
outgoing edges). Therefore, it is important to work
on the less restrictive arguments. Yet, it has not
been deeply studied except a few studies (Niculae
et al., 2017; Galassi et al., 2018).

In this paper, we present a novel model for non-
tree argument mining. Different from the previ-
ous studies of Niculae et al. (2017); Galassi et al.
(2018), we focus on an effective encoding for the
propositions and a graph-based non-tree argument
parsing technique. Given sentence or clause spans
in an argument, our model jointly predicts proposi-
tion types for the spans, edges between the proposi-
tions and edge labels by employing following two
architectures:
– Task-Specific Parameterization (TSP) is an ef-
fective encoding step for the proposition sequence.
On top of a shared encoder, we prepare two dis-
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tinct attention-to-encoder layers to maintain task-
specific representations. One is for the proposition
type, and the other for the edges (and their labels).
TSP employs our expectation that edge- and propo-
sition type-specific representations should be sep-
arately obtained. This is because representations
of proposition types and edges are relatively less
bonded when compared to the tree-structured Es-
say where each premise proposition always has one
outgoing edge.
– Proposition-Level Biaffine Attention (PLBA)
is used to predict non-tree edges after the encod-
ing step. Biaffine attention has recently been used
for syntactic or semantic token-to-token depen-
dency parsing (Dozat and Manning, 2017, 2018;
Wang et al., 2019; Zhang et al., 2019; Li et al.,
2019b,a). We extend the biaffine attention to pre-
dict proposition-to-proposition dependencies.

Experimental results on CDCP show that our
proposed model improves performance. Analyses
also show that task-specific information can be cap-
tured by TSP.

2 Dataset

We use CDCP (Park and Cardie, 2018; Niculae
et al., 2017) with 731 arguments. The corpus
provides five types of propositions (32 REFER-
ENCE, 746 FACT, 1026 TESTIMONY, 2160 VALUE

and 815 POLICY), and two types of argumentative
edges (1307 REASON and 46 EVIDENCE). For ex-
ample, FACT poses a truth value that can be verified
with objective evidence: That process usually takes
as much as two years or more. CDCP also provides
directed edges between propositions and edge la-
bel. A proposition i is REASON for a proposition j
if i provides rationale for j, or is EVIDENCE if it
proves whether j is true or not.

3 Task Formalization

Input: We assume a text consisting of N tokens
and M proposition spans is given. We denote
the i-th proposition span as (START(i),END(i))
where START(i) and END(i) are the starting and
ending token indices, respectively. Thus, 1 ≤
START(i) ≤ END(i) ≤ N .
Output: For each given span i, we predict its
proposition type, outgoing edges, and edge labels
(i.e., REASON and EVIDENCE), where the graph
does not necessarily form a tree.

4 Approach

An overview of our proposed model is shown in
Figure 3 (right). We encode propositions by TSP,
and use PLBA to obtain non-tree arguments.

We use wt to denote the concatenation of t-th set
of word features, each set consisting of a surface,
a part-of-speech tag, a GloVe vector (Pennington
et al., 2014) and an optional ELMo vector (Peters
et al., 2018). The input words for span i are fed
into a bidirectional LSTM:

hSTART(i):END(i) = BILSTM
(
wSTART(i):END(i)

)
.

4.1 TSP: Task-Specific Parameterization
We provide task-specific encoding layers, one for
proposition types and the other for edges (and
their labels), on the top of the BILSTM. We
expect the lower layers to extract task-universal
representations and the upper layers to extract
more task-specific representations (Liu et al., 2019;
Ethayarajh, 2019). First, to be aware of infor-
mative tokens such as discourse markers, we ob-
tain task-aware span representations for each task
τ ∈ {type, edge}:

aτ,t = v>
τ (Wτht + bτ ),

sτ,i,t =
exp(aτ,t)∑END(i)

k=START(i) exp(aτ,k)
,

h
span att
τ,i =

END(i)∑
t=START(i)

sτ,i,tht,

where vτ , Wτ and bτ are parameters. We note that
h

span att
τ,i ∈ {hspan att

type,i ,h
span att
edge,i }. Then, each type-

and edge-specific proposition span is represented
as:

h
span
type,i = hEND(i) ⊕ h

span att
type,i ⊕ φ(i),

h
span
edge,i = hEND(i) ⊕ h

span att
edge,i ⊕ φ(i),

where ⊕ is a concatenation operation and φ(i) is a
span length feature. The span representations are
then fed into new BiLSTMs to encode task-specific
proposition sequences:

stype,i = BILSTMtype(h
span
type,i),

sedge,i = BILSTMedge(h
span
edge,i).

4.2 PLBA: Proposition-Level Biaffine
Attention

To predict non-tree edges between propositions, we
use biaffine attention (Dozat and Manning, 2018)
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Figure 3: Simplified overview of (left) non-TSP model using a naive single attention-to-encoder system and (right)
our proposed model. Note that, for each figure, only two propositions in six propositions are shown for the
visibility.

that computes scores of all proposition pairs by the
following operation:

BIAFFINEk (x,y) =

[
x
1

]>
Uky,

where Uk is a parameter. We apply multi-layer per-
ceptrons (MLPs) and a biaffine operation to a pair
of edge-specific representations (sedge,i, sedge,j) to
obtain a probability of a directed edge from i-th
span to j-th span:

e(src)
i = MLP(src)

edge

(
sedge,i

)
,

e
(trg)
j = MLP(trg)

edge

(
sedge,j

)
,

ˆedgei,j = sigmoid
(

BIAFFINEedge

(
e(src)
i , e

(trg)
j

))
,

and the label for the edge (i, j) is calculated as

`(src)
i = MLP(src)

label(sedge,i),

`
(trg)
j = MLP(trg)

label(sedge,j),

ˆlabeli,j = softmax
(

BIAFFINElabel

(
`(src)
i , `

(trg)
j

))
.

We train edges and labels by summing the losses,
backpropagating gradients for the labels only
through gold edges. At inference, the predicted
labels are masked by the edges: ˆedgei,j ⊗ ˆlabeli,j .

4.3 Joint Learning with Proposition Type
We classify the proposition type for span i
with the type-specific representation: ˆtypei =
softmax

(
MLPtype

(
stype,i

))
. Finally, we mini-

mize the joint objective of edge loss Ledge
i , label

loss Llabel
i and type loss Ltype

i :

L =
M∑
i=1

(
λedgeLedge

i + λlabelLlabel
i + λtypeLtype

i

)
,

where λ are hyperparameters to adjust training.

5 Experiments

Following Niculae et al. (2017), we evaluate the test
set of CDCP that contains 973 propositions and 272
edges. F1 scores for the proposition type prediction
and the edge prediction along with their average
are used for the evaluations. For the edge labels,
we only consider the classification of EVIDENCE

rather than macro-averaged scores because labels
are highly imbalanced. We calculate label scores
on gold edges.

5.1 Baselines

To the best of our knowledge, two existing stud-
ies are comparable in our task settings. The first
set of baselines are factor-based models (SVM ba-
sic/full/strict ; RNN basic/full/strict; Niculae et al.,
2017). Another set of baselines are neural residual
models (deep basic PG/LG ; deep residual PG/LG;
Galassi et al., 2018), which are the state-of-the-art
models in terms of edge classification.

We also provided a non-TSP model for com-
parison where we use a joint aggregation to make
stype,i = sedge,i. To this end, we provide a shared
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model edge type
avg. avg. label

EVIDENCE
deep basic: LG 22.56 43.79 33.18 -
RNN: full 14.6 52.4 33.5 -
RNN: strict 10.5 65.9 38.2 -
deep basic: PG 22.45 63.31 42.88 -
RNN: basic 14.4 72.7 43.5 -
deep residual: PG 20.76 71.99 46.37 -
deep residual: LG 29.29 65.28 47.28 -
SVM: basic 24.7 71.6 48.1 -
SVM: full 25.1 73.5 49.3 -
SVM: strict 26.7 73.2 50.0 -
ours 34.04 78.91 56.48 18.73
+ checkpoint ensemble 33.84 79.48 56.66 21.28

Table 1: F1 comparison against the existing models on
CDCP

representation for both type and edge:

h
span
type&edge,i = h

span
type,i = h

span
edge,i,

= hEND(i) ⊕ h
span att
type&edge,i ⊕ φ(i).

and we use a joint encoder:

stype&edge,i = stype,i = sedge,i

= BILSTMtype&edge(h
span
type&edge,i).

According to the change above, the non-TSP model
also requires us to modify the pre-biaffine MLPs
and the proposition type classifier (see Appendix
for more details).

5.2 Implementation
GloVe (Pennington et al., 2014) and ELMo (Pe-
ters et al., 2018) were used as input embeddings.
The hyperparameters were tuned with Optuna (Ak-
iba et al., 2019) without using ELMo and TSP for
fair comparison (see Appendix for more details).
Each model was trained for 100 epochs with Adam
(Kingma and Ba, 2015), and we selected a model
that exhibited the highest average development F1
scores amongst all the classifiers.

6 Results

We ran the experiment 30 times with different ran-
dom seeds. Table 1 shows their average scores,
showing our models outperform all the baselines.
F1 performance for each proposition type are:
FACT=51.58, POLICY=83.32, REFERENCE=100.0,
TESTIMONY=78.99, and VALUE=80.67. We also
report the results of our model with checkpoint
ensemble (Chen et al., 2017)1, showing a stable

1Different from the study, we simply employed the best
three checkpoints.
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Figure 4: Task-specific ablation study (F1 scores). The
dashed red line indicates a state-of-the-art baseline.
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Figure 5: Attention weight analysis with a violin plot
by a kernel density estimation

performance for both the proposition type and EV-
IDENCE label classification.

6.1 Ablation Study

Figure 4 shows ablation studies. The non-ELMo
model already outperforms the state-of-the-art base-
line in the edge prediction task, showing that PLBA
is effective. Besides, ELMo boosted the type clas-
sification.

Figure 4a shows that the edge scores for the
non-multi-task model are significantly lower, while
Figure 4b shows that its type scores are barely af-
fected. The result implies the edge task utilizes type
information in the lower layer, but the type task is
less dependent on edges. Besides, the edge scores
for the non-TSP model are worse, indicating that
TSP is effective in obtaining a stable performance.
The result implies that TSP acquires edge-specific
representations independently from types.

6.2 What Does TSP Learn?

To further analyze TSP, we investigated the task-
specific token attention sτ,i,t. Figure 5 shows the at-
tention distributions by a kernel density estimation
for a number of selected tokens. The figure shows
that not only discourse markers (i.e., because, but
and so) but rhetorical or subjective claims (i.e., why
and disagree) were focused in edge predictions. We
found in the corpus that propositions with disagree
and why are likely to be a top (claim) node. This
suggests that these subjective statements can be
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used for predicting the top nodes.
For proposition types, a number of first-person

pronouns such as I were useful. We attribute this re-
sult to the TESTIMONY propositions which express
personal experiences, e.g., but I never received any
notice from my original mortgage lender that my
mortgage was sold.

7 Related Work

Researchers in argument mining have been utiliz-
ing Essay (Stab and Gurevych, 2014), a tree argu-
ment corpus. For example, Persing and Ng (2016)
employed integer linear programming. Eger et al.
(2017) investigated argument mining as a depen-
dency parsing problem with neural models. Potash
et al. (2017) developed a pointer network architec-
ture to predict edges. However, we cannot simply
utilize them for non-tree arguments because these
models were built upon the assumption that an ar-
gument forms a tree structure.

Non-tree arguments are relatively less empha-
sized. Niculae et al. (2017) attempted to resolve
the problem with a factor-based model. Our study
is primarily inspired by the semantic dependency
parsing of Dozat and Manning (2018) and we pre-
dict the whole graph jointly. Galassi et al. (2018)
proposed a deep learning-based model that utilizes
residual connections to predict proposition pair re-
lations.

8 Conclusion

This paper focused on non-tree argument mining.
We provided an approach to effectively encode a
proposition sequence and to predict non-tree edges.
Experimental results showed that our proposed
model outperforms baselines. This paper demon-
strated that we could successfully analyze more
flexible structures in arguments. For future work,
we aim to develop a universal model to handle both
tree and non-tree arguments.
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hyperparameter value or search space
GloVe dimention 300
GloVe embedding linear 100
POS embedding linear 100
ELMo type 2x4096, 512 2048cnn 2xhighway
input dropout 0.25, 0.33, 0.45
BILSTM dimension 200, 300, 400
BILSTM stack 1
BILSTMτ dimension 200, 300, 400
BILSTMτ stack 2, 3
recurrent dropout of all BiLSTMs 0.25, 0.33, 0.45
output dropout of all BiLSTMs 0.25, 0.33, 0.45
dimention of all MLPs 600, 700
dropout of all MLPs 0.25, 0.33, 0.45
activation of all MLPs ReLU
(λedge, λlabel, λtype) (0.6, 0.2, 0.2), (0.4, 0.3, 0.3), (0.333, 0.333, 0.333)
learning rate 0.0012, 0.0011, 0.001, 0.0009, 0.0008
Adam β1 0.9
Adam β2 0.999
epoch 100
mini-batch size 16

Table 2: List of hyperparameters. Multiple values indicates that the hyperparameter was tuned within those values.
Underlines show the selected hyperparameter by the Optuna framework.

options.json). Following Peters et al.
(2018), we mix different layers of ELMo for
each token:

s̃k =
exp(sk)∑
k′ exp(sk′)

,

wELMo
START(i):END(i)

=
∑
k

s̃kELMokSTART(i):END(i),

where ELMokSTART(i):END(i)(0 < k ≤
NELMo) is the hidden state of the k-th layer of
the ELMo obtained by START(i) to END(i)
tokens, ELMo0START(i):END(i) are the features
from character-level CNN in ELMo, and
sk are trainable parameters. The ELMo
paramters are fixed by truncating backpropa-
gation.

The surface and POS tag of a token are each
embedded into a vector. A multi-layered percep-
tron (MLP) is applied to each surface and POS. All
features are then concatenated to form input token
representation:

wt = wsurface
t ⊕wPOS

t ⊕wGloVe
t ,

Optionally, we can concatenate ELMo:

wt = wsurface
t ⊕wPOS

t ⊕wGloVe
t ⊕wELMo

t .

A.2 Non-TSP Model
For non-TSP model in experiments, we provide a
shared representation for both type and edge:

h
span
type&edge,i = h

span
type,i = h

span
edge,i,

= hEND(i) ⊕ h
span att
type&edge,i ⊕ φ(i).

and we use a joint encoder:

stype&edge,i = BILSTMtype&edge(h
span
type&edge,i).

According to the change above, the non-TSP also
requires us to modify the pre-biaffine operations:

e(src)
i = MLP(src)

edge

(
stype&edge,i

)
,

e
(trg)
j = MLP(trg)

edge

(
stype&edge,j

)
,

`(src)
i = MLP(src)

label(stype&edge,i),

`
(trg)
j = MLP(trg)

label(stype&edge,j),

and the proposition type classifier:

ˆtypei = softmax
(
MLPtype

(
stype&edge,i

))
.

A.3 Hyperparameter Tuning
We tuned the hyperparameters using a subset con-
sidering our preliminary experiments. See Table 2
for hyperparameter search space and list of hyper-
parameters chosen by the Optuna framework (Ak-
iba et al., 2019). We tried 20 hyperparameter sets.
As can be seen from the table, the high dropout rate
is effective. We estimate this is because the system
can prevent an overfitting. We also found stacking
BiLSTMs in TSP higher can improve performance,
implying the semantics can be captured in upper
layers.

elmo_2x4096_512_2048cnn_2xhighway_options.json
elmo_2x4096_512_2048cnn_2xhighway_options.json
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A.4 Single-task Setup
For the single-task setup (non-multi-task), we pro-
vide each task-specific learning: type, edge, and
edge label. Each model was optimized using its
objective using the same hyperparameters.


