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Abstract
In natural language processing, a recently pop-
ular line of work explores how to best report
the experimental results of neural networks.
One exemplar publication, titled “Show Your
Work: Improved Reporting of Experimental
Results” (Dodge et al., 2019), advocates for
reporting the expected validation effectiveness
of the best-tuned model, with respect to the
computational budget. In the present work,
we critically examine this paper. As far as
statistical generalizability is concerned, we
find unspoken pitfalls and caveats with this
approach. We analytically show that their
estimator is biased and uses error-prone as-
sumptions. We find that the estimator favors
negative errors and yields poor bootstrapped
confidence intervals. We derive an unbiased
alternative and bolster our claims with em-
pirical evidence from statistical simulation.
Our codebase is at https://github.com/
castorini/meanmax.

1 Introduction

Questionable answers and irreproducible results
represent a formidable beast in natural language
processing research. Worryingly, countless exper-
imental papers lack empirical rigor, disregarding
necessities such as the reporting of statistical signif-
icance tests (Dror et al., 2018) and computational
environments (Crane, 2018). As Forde and Pa-
ganini (2019) concisely lament, explorimentation,
the act of tinkering with metaparameters and pray-
ing for success, while helpful in brainstorming,
does not constitute a rigorous scientific effort.

Against the crashing wave of explorimentation,
though, a few brave souls have resisted the urge to
feed the beast. Reimers and Gurevych (2017) argue
for the reporting of neural network score distribu-
tions. Gorman and Bedrick (2019) demonstrate
that deterministic dataset splits yield less robust re-
sults than random ones for neural networks. Dodge

et al. (2019) advocate for reporting the expected
validation quality as a function of the computation
budget used for hyperparameter tuning, which is
paramount to robust conclusions.

But carefully tread we must. Papers that advo-
cate for scientific rigor must be held to the very
same standards that they espouse, lest they birth
a new beast altogether. In this work, we critically
examine one such paper from Dodge et al. (2019).
We acknowledge the validity of their technical con-
tribution, but we find several notable caveats, as
far as statistical generalizability is concerned. An-
alytically, we show that their estimator is nega-
tively biased and uses assumptions that are subject
to large errors. Based on our theoretical results,
we hypothesize that this estimator strongly prefers
underestimates to overestimates and yields poor
confidence intervals with the common bootstrap
method (Efron, 1982).

Our main contributions are as follows: First, we
prove that their estimator is biased under weak con-
ditions and provide an unbiased solution. Second,
we show that one of their core approximations often
contains large errors, leading to poorly controlled
bootstrapped confidence intervals. Finally, we em-
pirically confirm the practical hypothesis using the
results of neural networks for document classifica-
tion and sentiment analysis.

2 Background and Related Work

Notation. We describe our notation of fundamental
concepts in probability theory. First, the cumulative
distribution function (CDF) of a random variable
(RV)X is defined as F (x) := Pr[X ≤ x]. Given a
sample (x1, . . . , xB) drawn from F , the empirical
CDF (ECDF) is then F̂B(x) :=

1
B

∑B
i=1 I[xi ≤ x],

where I denotes the indicator function. Note that
we pick “B” instead of “n” to be consistent with
Dodge et al. (2019). The error of the ECDF is pop-
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ularly characterized by the Kolmogorov–Smirnov
(KS) distance between the ECDF and CDF:

KS(F̂B, F ) := sup
x∈R
|F̂B(x)− F (x)|. (2.1)

Naturally, by definition of the CDF and ECDF,
KS(F̂B, F ) ≤ 1. Using the CDF, the expectation
for both discrete and continuous (cts.) RVs is

E[X] =

∫ ∞
−∞

xdF (x), (2.2)

defined using the Riemann–Stieltjes integral.
We write the ith order statistic of independent

and identically distributed (i.i.d.) X1, . . . , XB as
X(i:B). Recall that the ith order statistic X(i:B) is
an RV representing the ith smallest value if the RVs
were sorted.

Hyperparameter tuning. In random search, a
probability distribution p(H) is first defined over
a k-tuple hyperparameter configuration H :=
(H1, . . . ,Hk), which can include both cts. and dis-
crete variables, such as the learning rate and ran-
dom seed of the experimental environment. Com-
monly, researchers choose the uniform distribu-
tion over a bounded support for each hyperpa-
rameter (Bergstra and Bengio, 2012). Combined
with the appropriate model familyM and dataset
D := (DT ,DV )—split into training and valida-
tion sets, respectively—a configuration then yields
a numeric score V on DV . Finally, after sam-
pling B i.i.d. configurations, we obtain the scores
V1, . . . , VB and pick the hyperparameter configura-
tion associated with the best one.

3 Analysis of Showing Your Work

In “Show Your Work: Improved Reporting of Ex-
perimental Results,” Dodge et al. (2019) realize the
ramifications of underreporting the hyperparameter
tuning policy and its associated budget. One of
their key findings is that, given different computa-
tion quotas for hyperparameter tuning, researchers
may arrive at drastically different conclusions for
the same model. Given a small tuning budget, a
researcher may conclude that a smaller model out-
performs a bigger one, while they may reach the
opposite conclusion for a larger budget.

To ameliorate this issue, Dodge et al. (2019)
argue for fully reporting the expected maximum of
the score as a function of the budget. Concretely,
the parameters of interest are θ1, . . . , θB , where
θn := E [max{V1, . . . , Vn}] = E[V(n:n)] for 1 ≤

n ≤ B. In other words, θn is precisely the expected
value of the nth order statistic for a sample of size
n drawn i.i.d. at tuning time. For this quantity,
they propose an estimator, derived as follows: first,
observe that the CDF of V ∗n = V(n:n) is

Pr[V ∗n ≤ v] = Pr[V1 ≤ v ∧ · · · ∧ Vn ≤ v] (3.1)

= Pr[V ≤ v]n, (3.2)

which we denote as Fn(v). Then

θn = E[V(n:n)] =
∫ ∞
−∞

vdFn(v). (3.3)

For approximating the CDF, Dodge et al. (2019)
use the ECDF F̂n

B(v), constructed from some sam-
ple S := (v1, . . . , vB), i.e.,

F̂n
B(v) =

(
F̂B(v)

)n
=

(
1

B

B∑
i=1

I[vi ≤ v]

)n

.

(3.4)
The first identity in Eq. (3.4) is clear from Eq. (3.2).
Without loss of generality, assume v1 ≤ · · · ≤ vB .
To construct an estimator θ̂n for θn, Dodge et al.
(2019) then replace the CDF with the ECDF:

θ̂n :=

∫ ∞
−∞

vdF̂n
B(v), (3.5)

which, by definition, evaluates to

θ̂n =

B∑
i=1

vi

(
F̂n
B(vi)− F̂n

B(vi−1)
)
, (3.6)

where, with some abuse of notation, v0 < v1 is a
dummy variable and F̂n

B(v0) := 0. We henceforth
refer to θ̂n as the MeanMax estimator. Dodge et al.
(2019) recommend plotting the number of trials on
the x-axis and θ̂n on the y-axis.

3.1 Pitfalls and Caveats
We find two unspoken caveats in Dodge et al.
(2019): first, the MeanMax estimator is statistically
biased, under weak conditions. Second, the ECDF,
as formulated, is a poor drop-in replacement for the
true CDF, in the sense that the finite sample error
can be unacceptable if certain, realistic conditions
are unmet.

Estimator bias. The bias of an estimator θ̂ is de-
fined as the difference between its expectation and
its estimand θ: Bias(θ̂) := E[θ̂]− θ. An estimator
is said to be unbiased if its bias is zero; otherwise,
it is biased. We make the following claim:
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Theorem 1. Let V1, . . . , VB be an i.i.d. sample (of
size B) from an unknown distribution F on the real
line. Then, for all 1 ≤ n ≤ B, Bias(θ̂n) ≤ 0, with
strict inequality iff V(1) < V(n) with nonzero prob-
ability. In particular, if n = 1, then Bias(θ̂1) = 0
while if n > 1 with F continuous or discrete but
non-degenerate, then Bias(θ̂n) < 0.

Proof. Let 1 < n ≤ B. We are interested in esti-
mating the expectation of the maximum of the n
i.i.d. samples:

θn := E[Vn:n] = E[max{V1, . . . , Vn}].

An obvious unbiased estimator, based on the given
sample of size B, is the following:

ÛB
n :=

1(
B
n

) ∑
1≤i1<i2<···<in≤B

max{Vi1 , . . . , Vin}.

This estimator is obviously unbiased since

E[ÛB
n ] = E[max{Vi1 , . . . , Vin}] = θn,

due to the i.i.d. assumption on the sample.
A second, biased estimator is the following:

V̂ B
n :=

1

Bn

∑
1≤i1≤i2≤···≤in≤B

max{Vi1 , . . . , Vin}.

(3.7)

This estimator is only asymptotically unbiased
when n is fixed while B tends to∞. In fact, we
will prove below that for all 1 ≤ n ≤ B:

V̂ B
n ≤ ÛB

n , (3.8)

with strict inequality iff V(1) < V(n), where V(i) =
V(i:B) is defined as the ith smallest order statistic
of the sample. We start with simplifying the calcu-
lation of the two estimators. It is easy to see that
the following holds:

ÛB
n =

B∑
j=1

(
j−1
n−1
)(

B
n

) V(j),
where we basically enumerate all possibilities for
max{Vi1 , . . . , Vin} = V(j). By convention,

(
m
n

)
=

0 if m < n so the above summation effectively
goes from k to B, but our convention will make it
more convenient for comparison. Similarly,

V̂ B
n =

B∑
j=1

jn − (j − 1)n

Bn
V(j).

We make an important observation that connects
our estimators to that of Dodge et al. Let F̂B(x) =
1
B

∑B
i=1 I[Vi ≤ x] be the empirical distribution of

the sample. Then, the plug-in estimator, where we
replace F with F̂B , is

θ̂Bn = Ê[max{V̂1, . . . , V̂n}], where V̂i
iid∼ F̂B

=
B∑
j=1

[F̂n
B(V(j))− F̂n

B(V(j−1))]V(j) = V̂ B
n ,

since F̂n
B(V(j)) = (j/B)n if there are no ties in the

sample. The formula continues to hold even if there
are ties, in which case we simply collapse the ties,
using the fact that

∑k
j=i F̂

n
B(V(j))− F̂n

B(V(j−1)) =

F̂n
B(V(k)) − F̂n

B(V(i−1)) when V(i−1) < V(i) =
V(i+1) = · · · = V(k) < V(k+1).

Now, we are ready to prove Eq. (3.8). All we
need to do is to compare the cumulative sums of
the coefficients in the two estimators:

k∑
j=1

(
j−1
n−1
)(

B
n

) =

(
k
n

)(
B
n

) , k∑
j=1

jn − (j − 1)n

Bn
=
kn

Bn
.

We need only consider k ≥ n (the case k < n is
trivial). One can easily verify the following expres-
sion backwards:(

k
n

)(
B
n

) < kn

Bn
⇐⇒

(
k
n

)
kn

<

(
B
n

)
Bn

⇐⇒
n−1∏
i=0

(1− i

k
) <

n−1∏
i=0

(1− i

B
),

where the last inequality follows from k < B and
n > 1. Thus, we have verified the following for all
1 ≤ k < B:

k∑
j=1

(
j−1
n−1
)(

B
n

) <
k∑

j=1

jn − (j − 1)n

Bn
.

Eq. (3.8) now follows since V(1) < · · · < V(B)

lies in the isotonic cone while we have proved the
difference of the two coefficients lies in the dual
cone of the isotonic cone. An elementary way to
see this is to first compare the coefficients in front
of V(B): clearly, ÛB

n ’s is larger since it has smaller
sum of all coefficients (but the one in front of V(B);
take k = B − 1) whereas the total sum is always
one. Repeat this comparison for V(1), . . . , V(B−1).

Lastly, if V(1) < V(n), then there exists a subset
(with repetition) 1 ≤ i1 ≤ . . . ≤ in ≤ n such
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that max{V(i1), . . . , V(in)} < V(n). For instance,
setting i1 = . . . = in = 1 would suffice. Since V̂ B

n

puts positive mass on every subset of n elements
(with repetitions allowed), the strict inequality fol-
lows. We note that if F is continuous, or if F is
discrete but non-degenerate, then V(1) < V(n) with
nonzero probability, hence

Bias(θ̂n) = E(V̂ B
n − ÛB

n ) < 0.

The proof is now complete.

For further caveats, see Appendix A. The prac-
tical implication is that researchers may falsely
conclude, on average, that a method is worse than
it is, since the MeanMax estimator is negatively
biased. In the context of environmental conscious-
ness (Schwartz et al., 2019), more computation
than necessary is used to make a conclusion.

ECDF error. The finite sample error (Eq. 2.1) of
approximating the CDF with the ECDF (Eq. 3.4)
can become unacceptable as n increases:

Theorem 2. If the sample does not contain the pop-
ulation maximum, KS(F̂n

B, F
n)→ 1 exponentially

quickly as n and B increase.

Proof. See Appendix B.

Notably, this result always holds for cts. distri-
butions, since the population maximum is never in
the sample. Practically, this theorem suggests the
failure of bootstrapping (Efron, 1982) for statisti-
cal hypothesis testing and constructing confidence
intervals (CIs) of the expected maximum, since
the bootstrap requires a good approximation of the
CDF (Canty et al., 2006). Thus, relying on the boot-
strap method for constructing confidence intervals
of the expected maximum, as in Lucic et al. (2018),
may lead to poor coverage of the true parameter.

4 Experiments

4.1 Experimental Setup

To support the validity of our conclusions, we opt
for cleanroom Monte Carlo simulations, which en-
able us to determine the true parameter and draw
millions of samples. To maintain the realism of our
study, we apply kernel density estimation to actual
results, using the resulting probability density (or
discretized mass) function as the ground truth distri-
bution. Specifically, we examine the experimental
results of the following neural networks:

Document classification. We first conduct hyper-
parameter search over neural networks for docu-
ment classification, namely a multilayer percep-
tron (MLP) and a long short-term memory (LSTM;
Hochreiter and Schmidhuber, 1997) model repre-
senting state of the art (for LSTMs) from Adhikari
et al. (2019). For our dataset and evaluation metric,
we choose Reuters (Apté et al., 1994) and the F1

score, respectively. Next, we fit discretized kernel
density estimators to the results—see the appendix
for experimental details. We name the distributions
after their models, MLP and LSTM.
Sentiment analysis. Similar to Dodge et al.
(2019), on the task of sentiment analysis, we tune
the hyperparameters of two LSTMs—one ingest-
ing embeddings from language models (ELMo;
Peters et al., 2018), the other shallow word vec-
tors (GloVe; Pennington et al., 2014). We choose
the binary Stanford Sentiment Treebank (Socher
et al., 2013) dataset and apply the same kernel den-
sity estimation method. We denote the distributions
by their embedding types, GloVe and ELMo.

4.2 Experimental Test Battery

False conclusion probing. To assess the impact
of the estimator bias, we measure the probability
of researchers falsely concluding that one method
underperforms its true value for a given n. The
unbiased estimator has an expectation of 0.5, pre-
ferring neither underestimates nor overestimates.

Concretely, denote the true n-run expected max-
ima of the method as θn and the estimator as θ̂n.
We iterate n = 1, . . . , 50 and report the proportion
of samples (of size B = 50) where θ̂n < θn. We
compute the true parameter using 1,000,000 itera-
tions of Monte Carlo simulation and estimate the
proportion with 5,000 samples for each n.
CI coverage. To evaluate the validity of bootstrap-
ping the expected maximum, we measure the cov-
erage probability of CIs constructed using the per-
centile bootstrap method (Efron, 1982). Specifi-
cally, we set B = 50 and iterate n = 1, . . . , 50.
For each n, across M = 1000 samples, we com-
pare the empirical coverage probability (ECP) to
the nominal coverage rate of 95%, with CIs con-
structed using 5, 000 bootstrapped resamples. The
ECP α̂n is computed as

α̂n :=
1

M

M∑
i=1

I (θn ∈ CIi) , (4.1)

where CIi is the CI of the ith sample.
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Figure 1: The estimated budget–quality curves, along
with the true curves.
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Figure 2: Illustration of a failure case with B = 25.

4.3 Results

Following Dodge et al. (2019), we present the
budget–quality curves for each model pair in Fig-
ure 1. For each n number of trials, we vertically
average each curve across the 5,000 samples. We
construct CIs but do not display them, since the
estimate is precise (standard error < 0.001). For
document classification, we observe that the LSTM
is more difficult to tune but achieves higher quality
after some effort. For sentiment analysis, using
ELMo consistently attains better accuracy with the
same number of trials—we do not consider the wall
clock time.

In Figure 2, we show a failure case of biased
estimation in the document classification task. At
B = 25, from n = 20 to 25, the averaged esti-
mate yields the wrong conclusion that the MLP
outperforms the LSTM—see the true LSTM line,
which is above the true MLP line, compared to its
estimate, which is below.

False conclusions probing. Figure 3 shows the
results of our false conclusion probing experiment.
We find that the estimator quickly prefers negative
errors as n increases. The curves are mostly similar
for both tasks, except the MLP fares worse. This
requires further analysis, though we conjecture that
the reason is lower estimator variance, which would
result in more consistent errors.
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Figure 3: The false conclusion probing experiment re-
sults, along with Clopper–Pearson 95% CIs.
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Figure 4: The CI coverage experiment results, along
with Clopper–Pearson 95% CIs.

CI coverage. We present the results of the CI cov-
erage experiment results in Figure 4. We find that
the bootstrapped confidence intervals quickly fail
to contain the true parameter at the nominal cov-
erage rate of 0.95, decreasing to an ECP of 0.7 by
n = 20. Since the underlying ECDF is the same,
this result extends to Lucic et al. (2018), who con-
struct CIs for the expected maximum.

5 Conclusions

In this work, we provide a dual-pronged theoreti-
cal and empirical analysis of Dodge et al. (2019).
We find unspoken caveats in their work—namely,
that the estimator is statistically biased under weak
conditions and uses an ECDF assumption that is
subject to large errors. We empirically study its
practical effects on tasks in document classifica-
tion and sentiment analysis. We demonstrate that it
prefers negative errors and that bootstrapping leads
to poorly controlled confidence intervals.
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Model Mode Batch Size Learning Rate Seed Dropout # Layers Hidden Dim. WDrop EDrop βEMA

MLP – (16, 32, 64) 0.001 [0, 107]D [0.05, 0.7] 1 [256, 768]D – – –

LSTM
(nonstatic[0.5],

static[0.4], rand[0.1])
(16, 32, 64) TExp[0.001, 0.099] [0, 107]D [0.05, 0.7] (1[0.75], 2[0.25]) [384, 768]D [0, 0.3] [0, 0.3] [0.985, 0.995]

Table 1: Hyperparameter random search bounds. [·, ·]D indicates a discrete uniform range, while [·, ·] continuous
uniform. TEXP[·, ·] denotes the truncated exponential distribution. Tuples represent categorical distributions, uni-
form by default. WDrop and EDrop denote weight and embed dropout. For the GloVe- and ELMo-based search
bounds, see https://github.com/allenai/show-your-work.

A Cautionary Notes

We caution that the estimator described in the text
of Dodge et al. is V̂ n

n . This is clear from their
equation (7) where the empirical distribution is
defined over the first n samples, instead of the B
samples that we use here. In other words, they
claim, at least in the text, to use F̂n instead of F̂B

for their estimator V̂ n
n . Clearly, the estimator V̂ n

n is
(much) worse than V̂ B

n since the latter exploits all
B samples while the former only looks at the first
n samples. However, close examination of their
codebase1 reveals that they use V̂ B

n , so the paper
discrepancy is a simple notation error.

Lastly, we mention that our notation for ÛB
n and

V̂ B
n is motivated by the fact that the former is a
U -statistic while the latter is a V -statistic. The
relation between the two has been heavily studied
in statistics since Hoeffding’s seminar work. For
us, it suffices to point out that V̂ B

n ≤ ÛB
n , with

the latter being unbiased while the former is only
asymptotically unbiased. The difference between
the two is more pronounced when n is close to B.
We note that ÛB

n can be computed by a reasonable
approximation of the binomial coefficients, using
say Stirling’s formula.

B Proof of Theorem 2

Theorem 3. If the sample does not contain the pop-
ulation maximum, KS(F̂n

B, F
n)→ 1 exponentially

quickly as n and B increase.

Proof. Suppose v∗ is not in the sample v1, . . . , vB ,
where v1 ≤ · · · ≤ vB < v∗. Then

sup
x∈R
|F̂n

B(x)− Fn(x)| ≥ |F̂n
B(vB)− Fn(vB)|.

From Equation 2.1, F̂n
B(vB) = (F̂B(vB))

n = 1 >
(F (vB))

n = Fn(vB), hence

|F̂n
B(vB)− Fn(vB)| = 1− (F (vB))

n.

Thus concluding the proof.
1https://github.com/allenai/allentune

Model # Runs Bandwidth Support Bins

MLP 145 0.0049 [0.72, 0.82] 511
LSTM 152 0.059 [−0.18, 1.08] 511
GloVe 114 0.018 [0.46, 0.97] 511
ELMo 84 0.041 [0.39, 0.99] 511

Table 2: Model kernel parameters. Bandwidth chosen
using Scott’s normal reference rule. Bins denote the
number of discretized slots.
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Figure 5: Gaussian kernel density estimators fitted to
each model’s results, along with the histograms of the
original runs.

C Experimental Settings

We present hyperparameters in Tables 1 and 2 and
Figure 5. We conduct all GloVe and ELMo exper-
iments using PyTorch 1.3.0 with CUDA 10.0 and
cuDNN 7.6.3, running on NVIDIA Titan RTX, Ti-
tan V, and RTX 2080 Ti graphics accelerators. Our
MLP and LSTM experiments use PyTorch 0.4.1
with CUDA 9.2 and cuDNN 7.1.4, running on RTX
2080 Ti’s. We use Hedwig2 for the document clas-
sification experiments and the Show Your Work
codebase (see link in Table 1) for the sentiment
classification ones.

2https://github.com/castorini/hedwig

https://github.com/allenai/show-your-work
https://github.com/allenai/allentune
https://github.com/castorini/hedwig

