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Abstract

We propose a novel, accurate, and explain-
able recommender model (BENEFICT) that
addresses two drawbacks that most review-
based recommender systems face. First is
their utilization of traditional word embed-
dings that could influence prediction perfor-
mance due to their inability to model the
word semantics’ dynamic characteristic. Sec-
ond is their black-box nature that makes the
explanations behind every prediction obscure.
Our model uniquely integrates three key ele-
ments: BERT, multilayer perceptron, and max-
imum subarray problem to derive contextual-
ized review features, model user-item interac-
tions, and generate explanations, respectively.
Our experiments show that BENEFICT consis-
tently outperforms other state-of-the-art mod-
els by an average improvement gain of nearly
7%. Based on the human judges’ assess-
ment, the BENEFICT-produced explanations
can capture the essence of the customer’s pref-
erence and help future customers make pur-
chasing decisions. To the best of our knowl-
edge, our model is one of the first recom-
mender models to utilize BERT for neural col-
laborative filtering.

1 Introduction

In recommender systems research, collaborative
filtering (CF) is the dominant state-of-the-art rec-
ommendation model, which primarily focuses on
learning accurate representations of users (user
preferences) and items (item characteristics) (Chen
et al., 2018; Tay et al., 2018). The earliest rec-
ommender models learned these representations
based on user-given numeric ratings that each item
received (Mnih and Salakhutdinov, 2008; Koren
et al., 2009). However, ratings, which are values
on a single discrete scale, oversimplify user prefer-
ences and item characteristics (Musto et al., 2017).
The large amount of users and items in a typical
online platform consequently results in a highly

sparse rating matrix, making it hard to learn accu-
rate representations (Zheng et al., 2017).

To alleviate these issues, review texts have in-
stead been utilized to model such representations
for subsequent recommendation and rating predic-
tion, and this approach has attracted growing at-
tention in research (Catherine and Cohen, 2017;
Zheng et al., 2017). The main advantage of reviews
as the source of features is that they can cover user
opinions’ multi-faceted substance. Because users
can explain their reasons underlying their given
ratings, reviews contain a large amount of latent
information that is both rich and valuable, and that
cannot be otherwise obtained from ratings alone
(Chen et al., 2018; Wang et al., 2019). Recently,
models that incorporate user reviews have yielded
state-of-the-art performances (Zheng et al., 2017;
Chen et al., 2018). These approaches learn user
and item representations by using traditional word
embeddings (e.g., word2vec, GloVe) to map each
word in the review into its corresponding vector.
The review is transformed into an embedded matrix
before being fed to a convolutional neural network
(CNN) (Chen et al., 2018). CNNs have been shown
to effectively model reviews and have illustrated
outstanding results in numerous natural language
processing tasks (Wang et al., 2018a).

Nevertheless, there are drawbacks that most
review-based recommender models experience.
First is the utilization of traditional or mainstream
word embeddings to learn review features. Their
static nature is a hindrance, as each word sense is as-
sociated with the same embedding regardless of the
context. In other words, such embeddings cannot
identify the dynamic nature of each word’s seman-
tics. For review-based recommenders, this could be
an issue in modeling users and items, which could,
in turn, affect recommendation performance (Pile-
hvar and Camacho-Collados, 2019). Also, once a
CNN is fed with the matrix of word embeddings,
the word frequency information of contextual fea-
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tures, said to be crucial for modeling reviews, will
be lost (Wang et al., 2018a).

Another drawback is the inherent black-box na-
ture of deep learning-based models that makes
the explanations behind every prediction obscure
(Ribeiro et al., 2016; Wang et al., 2018b). The com-
plex architecture of hidden layers has opaqued the
models’ internal decision-making processes (Peake
and Wang, 2018). Providing explanations could
help persuade users to make decisions and develop
trust in a recommender system (Zhang et al., 2014;
Ribeiro et al., 2016; Costa et al., 2018; Peake and
Wang, 2018). However, this leads us to a dilemma,
i.e., a trade-off between accuracy and explainability.
Usually, the most accurate models are inherently
complicated, non-transparent, and unexplainable
(Zhang and Chen, 2018). The same is also true
for explainable and straightforward methods that
sacrifice accuracy. Formulating models that are
both explainable and accurate is a challenging yet
critical research agenda for the machine learning
community to ensure that we derive benefits from
machine learning fairly and responsibly (Peake and
Wang, 2018).

In this paper, we propose a unique model:
BERT-Based Neural Collaborative Filtering and
Fixed-Length Contiguous Tokens Explanation
(BENEFICT). Our model learns user and item rep-
resentations simultaneously using two parallel net-
works. To address the first drawback, we incorpo-
rate BERT as a key component in each parallel net-
work. BERT affords us to extract more meaningful,
contextualized features adaptable to arbitrary con-
texts; such features cannot be derived from main-
stream word embeddings (Pilehvar and Camacho-
Collados, 2019; Zakbik et al., 2019). BERT can
also retain the word frequency information that
makes CNN an unnecessary component of our
model. Once user and item representations are
learned, they are concatenated together in a shared
hidden space before being finally fed to an optimal
stack of multilayer perceptron (MLP) layers that
serve as BENEFICT’s interaction function.

To address the second drawback, we introduce
a novel component in our model that integrates
BERT’s self-attention and an implementation of the
fixed-length maximum subarray problem (MSP),
which is considered to be a classic computer sci-
ence problem. BERT applies self-attention in
each encoder layer that consequently produces self-
attention weights for each token. These are passed

to the successive encoder layers through feedfor-
ward networks. We argue that these self-attention
weights can be the basis for explaining rating pre-
dictions. Based on this premise, MSP then selects
a segment or subarray of consecutive tokens that
has the maximum possible sum of self-attention
weights.

1.1 Contributions

Our work aims to fill the research gap by imple-
menting a solution that is both accurate and ex-
plainable. We propose a novel model that uniquely
integrates three vital elements, i.e., BERT, MLP,
and MSP, to derive review features, model user-
item interactions, and produce possible explana-
tions. To the best of our knowledge, BENEFICT
is one of the first review-based recommender mod-
els to utilize BERT for neural CF. Also, to the
extent of our knowledge, BENEFICT is one of
the first models to repurpose a portion of the Neu-
ral Collaborative Filtering (NCF) framework (He
et al., 2017) as the user-item interaction function
for review-based, explicit CF. Moreover, our exper-
iments have demonstrated that our model achieves
better rating prediction results than the other state-
of-the-art recommender models.

2 Related Work and Concepts

Designing a CF model involves two crucial steps:
learning user and item representations and model-
ing user-item interactions based on those represen-
tations (He et al., 2018). Before the advancements
provided by neural networks, matrix factorization
(MF) was the dominant model representing users
and items as vectors of latent factors (called embed-
dings) and models user-item interactions using the
inner product operation. The said operation leads
to poor performance because it is sub-optimal for
learning rich yet complicated patterns from real-
world data (He et al., 2018). To address this sce-
nario, neural networks (NN) have been integrated
into recommender architectures. One of the initial
works that have laid the foundation in employing
NN for CF is NCF (He et al., 2017). Their frame-
work, originally implemented for rating-based, im-
plicit CF, learns non-linear interactions between
users and items by employing MLP layers as their
interaction function, granting it a high degree of
non-linearity and flexibility to learn meaningful
interactions. Two common designs have emerged
when it comes to leveraging MLP layers: placing
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an MLP above either the concatenated user-item
embeddings (He et al., 2017; Bai et al., 2017) or the
element-wise product of user and item embeddings
(Zhang et al., 2017; Wang et al., 2017).

As far as rating prediction is concerned, two
notable recommender models have yielded sig-
nificant state-of-the-art prediction performances.
DeepCoNN is the first deep model that represents
users and items from reviews jointly (Zheng et al.,
2017). It consists of two parallel, CNN-powered
networks. One network learns user behavior by
examining all reviews that he has written, and the
other network models item properties by explor-
ing all reviews that it has received. A shared layer
connects these two networks, and factorization ma-
chines capture user-item interactions. The second
model is NARRE, which shares certain similari-
ties with DeepCoNN. NARRE is also composed of
two parallel networks for user and item modeling
with respective CNNs to process reviews (Chen
et al., 2018). Rather than concatenating reviews to
one long sequence the same way that DeepCoNN
does, their model introduces an attention mecha-
nism that learns review-level usefulness in the form
of attention weights. These weights are integrated
into user and item representations to enhance the
embedding quality and the subsequent prediction
accuracy. Both DeepCoNN and NARRE employ
traditional word embeddings.

Other relevant studies have claimed to provide
explanations for recommendations such as EFM
(Zhang et al., 2014), sCVR (Ren et al., 2017), and
TriRank (He et al., 2015). These models initially
extract aspects and opinions by performing phrase-
level sentiment analysis on reviews. Afterward,
they generate feature-level explanations according
to product features that correspond to user interests
(Chen et al., 2018). However, these models have
some limitations; manual preprocessing is required
for sentiment analysis and feature extraction, and
the explanations are simple extraction of words or
phrases from the review text (Zhang et al., 2014;
Ren et al., 2017). This also has the unintended
effect of distorting the reviews’ original meaning
(Ribeiro et al., 2016; Chen et al., 2018). Another
limitation is that textual similarity is solely based
on lexical similarity; this implies that semantic
meaning is ignored (Zheng et al., 2017; Chen et al.,
2018).

3 Methodology

BENEFICT, as illustrated in Figure 1, has two par-
allel networks to model user and item embeddings
that both utilize BERT. Hereafter, we will only
illustrate the user modeling process because the
same is also observed for item modeling, with their
inputs as the only difference.

3.1 Input Layer and BERT Encoding

Given an input set of user-written reviews Vu =
{Vu1, Vu2, ..., Vuj} where j is the total number of
reviews from user u, Vu is fed to a pre-trained
BERTBASE model to encode the reviews and ob-
tain their respective contextualized representations.
BERTBASE consists of 12 encoder layers and 12
self-attention heads (Devlin et al., 2018). It also
has a hidden size of 768, which we will directly
utilize later as the fixed embedding dimension. Fur-
thermore, BERT requires every review to follow a
particular format. For this purpose, the model ap-
plies WordPiece tokenization to the review’s input
sequence (Wu et al., 2016). The format is com-
prised of token embeddings, segment embeddings,
position embeddings, and padding masks. Because
rating prediction is not a sentence pairing task,
BERT takes each review as a single segment of
contiguous text. Typically, BERT supports a maxi-
mum sequence length of 512 tokens. In this study,
we use a shorter length of 256 tokens to save sub-
stantial memory. As such, each input sequence is
truncated or padded accordingly.

The newly-formatted input sequence then passes
through a stack of Transformer encoders to ob-
tain the contextualized representations of reviews:
h[CLS],u = {h[CLS],u1, h[CLS],u2, ..., h[CLS],uj},
where h[CLS],u ∈ Rj×768. We utilize the hidden
state of the special [CLS] token to serve as the re-
view’s aggregate sequence representation or pooled
contextualized embedding (Devlin et al., 2018). In
theory, any encoder layer may be selected to pro-
vide the hidden state of [CLS] as the review’s
representation. We select the twelfth layer for our
approach; prior studies have illustrated that its pre-
dictive capability is the best among the other layers
(Sun et al., 2019).

3.2 Embedding Generation, Multilayer
Perceptron, and Prediction

The user embedding (user feature vector) Pu ∈
R1×768 is obtained by calculating the average of the
[CLS] representations of the reviews written by
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user u, given by the formula below. Similarly, the
item embedding (item feature vector) Qi ∈ R1×768

can be generated from the item modeling network.

Pu =
1

j

j∑
t=1

h[CLS],ut (1)

Furthermore, the purpose of incorporating an
MLP is to learn the interactions between user and
item representations and to model the CF effect,
which will not be properly covered by solely using
vector concatenation or element-wise product (He
et al., 2017). Adding a certain number of hidden
layers on top of the concatenated user-item embed-
ding provides further flexibility and non-linearity.
Formally, the MLP component of BENEFICT is
defined as follows:

h0 =
[
Pu, Qi

]T
h1 = ReLU(W1h0 + b1)

hL = ReLU(WLhL−1 + bL)

R̂ui = WL+1hL + bL+1

(2)

where h0 ∈ R1×1536 is the concatenated user-item
embedding in the shared hidden space; hL repre-
sents the L-th MLP layer; WL and bL pertain to
the weight matrix and bias vector of the L-th layer,
respectively; and R̂ui denotes the predicted rating
that user u gives to item i. For the activation func-
tion of the MLP layers, we choose the rectified
linear unit (ReLU), which generally yields better
performance than other activation functions such
as tanh and sigmoid (Glorot et al., 2011; He et al.,
2016, 2017).

Concerning the structure, our model’s MLP com-
ponent follows a tower pattern where the bottom
layer is the widest, and every subsequent top layer
has a smaller number of neurons. The rationale be-
hind this is that the MLP can learn more abstractive
data features by utilizing fewer hidden units for the
top layers (He et al., 2016). In our implementation
for a three-layered MLP, the number of neurons
from the bottom layer to the top layer follows this
pattern: 1536 (concatenated embedding) → 768
(MLP layer 1)→ 384 (MLP layer 2)→ 192 (MLP
layer 3)→ 1 (prediction layer)

3.3 Learning
In training the model, the loss function is the mean
squared error (MSE) given by this formula:

MSE =
1

|Tr|
∑

u,i∈Tr

(Rui − R̂ui)
2 (3)

where Tr refers to the training samples or instances,
and Rui is the ground-truth rating given by user u
to item i. Moreover, we employ the Adaptive Mo-
ment Estimation with weight decay or AdamW
(Loshchilov and Hutter, 2018) to optimize the loss
function. Based on the original Adam optimizer,
AdamW also leverages the power of adaptive learn-
ing rates during training. This makes the selec-
tion of a proper learning rate less cumbersome that
consequently leads to faster convergence (Chen
et al., 2018). Unlike Adam, AdamW implements
a weight decay fix, a regularization technique that
prevents weights from growing too huge and is
proven to yield better training loss and generaliza-
tion error (Loshchilov and Hutter, 2018).

3.4 Explanation Generation
The stack of BERT’s Transformer encoders also
provides sets of self-attention weights that a to-
ken gives to every token found in the review text.
We are particularly interested in the attention that
[CLS] gives to each review token using the twelfth
layer’s multiple attention heads. Given an input
sequence of tokens Fuj produced by WordPiece
tokenization from review Vuj , a set of attention
weights is represented as:

α[CLS],uj = {αk
1(Fuj), α

k
2(Fuj), ..., α

k
g(Fuj)}

(4)
where k is the specific attention head in a particular
encoder layer, and αk

g is the attention that [CLS]
gives to the g-th WordPiece token over the input
sequence Fuj . There are 12 attention heads in an
encoder layer which translate to 12 different at-
tention weights that each token receives from the
[CLS] token. For a given token g, the following
formula is applied to compress the weights into a
single value:

ComAttg =
12∑
k=1

αk
g(Fuj) (5)

We then reformulate the task of generating expla-
nations as a fixed-length MSP. In its vanilla sense,
MSP selects a segment of consecutive array ele-
ments (i.e., a contiguous subarray of tokens) that
has the maximum possible sum over all other seg-
ments (Bae, 2007). In this paper, we introduce
constraint N to the MSP; N is a fixed value that
pertains to the length of the explanation. Formally,
the set of compressed attention weights per review
is given by the following array:

Auj = [ComAtt1, ComAtt2, ..., ComAttg] (6)
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Figure 1: The proposed BENEFICT architecture.

Dataset #Reviews #Users #Items

Toys and Games 167,597 19,412 11,924
Digital Music 64,706 5,541 3,568
Yelp-Dense 159,114 8,919 7,122
Yelp-Sparse 229,907 45,981 11,537

Table 1: Statistics summary of the datasets.

The goal is to find token indices x and y that maxi-
mize:

y∑
t=x

Auj [t] (7)

This is subject to the requirements that 1 ≤ x <
y ≤ 256 and (y − x) + 1 = N . Finally, the
generated explanation for review Vuj is represented
as:

EXPuj = Concat(Fuj,x, Fuj,x+1, ..., Fuj,y)
(8)

4 Experiments

In this section, we perform relevant experiments
intending to answer the following research ques-
tions:

RQ1: Does BENEFICT outperform other state-
of-the-art recommender models?

RQ2: What is the optimal configuration for
learning user-item interactions?
RQ3: Can our model produce explanations
acceptable to humans?

4.1 Datasets and Experimental Settings

Table 1 summarizes the four public datasets from
different domains used in our study. Two of these
datasets are Amazon 5-core1: Toys and Games,
which consists of nearly 168 thousand reviews, and
Digital Music, which contains about 65 thousand
reviews (McAuley et al., 2015). These datasets are
said to be 5-core wherein users and items have five
reviews each. We also utilize Yelp2, a large-scale
dataset for restaurant feedback and ratings. We
both employ its original, sparse version and its 5-
core, dense version with about 160 thousand and
230 thousand reviews, respectively. The ratings in
all datasets are in the range of [1, 5]. We randomly
split each dataset of user-item pairs into training
(80%), validation (10%), and test (10%) sets. In our
experiments, we perform an exhaustive grid search
over the following hyperparameters: number of
epochs [1, 20] and number of MLP layers [0, 3].
The learning rate and weight decay are both set to

1http://jmcauley.ucsd.edu/data/amazon/
2https://github.com/danielfrg/kaggle-yelp-recruiting-

competition
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Model Toys and
Games

Digital
Music

Yelp-
Dense

Yelp-
Sparse

Average

DeepCoNN 0.8971 0.8972 1.0311 1.2006 1.0065
NARRE 0.8840 0.8997 1.0312 1.1770 0.9979
BENEFICT 0.8348 0.8750 0.9963 0.9764 0.9206

∆BENEFICT 5.57% 2.47% 3.38% 17.04% 7.11%

Table 2: RMSE comparison of the recommender models. The best RMSE values are highlighted in bold. The last
row shows the improvement gained by BENEFICT against the better performing baseline.

0.001. Due to memory limitations, the batch size is
fixed at 32. We select the model configuration (i.e.,
a grid point) with the best root mean square error
(RMSE) on the validation set. We use the test set
for evaluating the model’s final performance.

4.2 Baselines and Evaluation Metric
To validate the effectiveness of BENEFICT, we se-
lect two other state-of-the-art models as baselines:

• DeepCoNN (Zheng et al., 2017): It is a deep
collaborative neural network model based on
two parallel CNNs to learn user and item fea-
ture vectors in a joint manner.

• NARRE (Chen et al., 2018): Similar to Deep-
CoNN, it is a neural attentional regression
model that integrates two parallel CNNs and
an attention mechanism to model latent fea-
tures.

Afterward, we calculate the RMSE, a widely
used metric for rating prediction, to evaluate the
models’ respective performances.

RMSE =

√
1

|Ts|
∑

u,i∈Ts

(Rui − R̂ui)2 (9)

In the formula, Ts denotes the test samples or in-
stances of user-item pairs.

4.3 Prediction Results and Discussion
Table 2 reports the RMSE values of BENEFICT
and the two baselines, with the last row (repre-
sented by ∆BENEFICT) indicating the improve-
ment gained by our model compared with the better
baseline. The results show that BENEFICT consis-
tently outperforms the baselines across all datasets;
our model has an average RMSE score of 0.9206,
as opposed to 1.0065 and 0.9979 for DeepCoNN
and NARRE, respectively. On average, this has

Figure 2: RMSE comparison of BENEFICT variants
using different user-item interaction functions. The
solid lines pertain to the concatenation-MLP interac-
tion function. On the other hand, the broken lines refer
to the interaction function based on the element-wise
product (EWP) and MLP.

resulted in the improvement gained by BENEFICT
of nearly 7%. These results validate our hypothe-
sis that using BERT-derived embeddings and rep-
resentations, considered to be more semantically
meaningful than their traditional counterparts, can
significantly improve rating prediction accuracy
and that BERT can likewise offset the limitations
of mainstream word embeddings and CNN.

Moreover, the rationale of employing two ver-
sions of Yelp is to compare the recommender
models’ performances on both dense and sparse
datasets. As illustrated in the fourth and fifth
columns of Table 2, both the RMSE values of Deep-
CoNN and NARRE worsen when they attempt to
perform predictions on the original, sparse Yelp.
For DeepCoNN, from the dense version’s RMSE
of 1.0311, it increases to 1.2006. The same is
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Figure 3: Distribution of the judges’ given usefulness
scores based on US1.

also true for NARRE, whose RMSE increases to
1.1770 from 1.0312. Interestingly, BENEFICT pro-
duces an entirely different observation; its RMSE
decreases to 0.9764 from 0.9963. Our model’s im-
provement is 17.04%, greater than ∆BENEFICT
for the three other datasets. We attribute these
findings to the greater amount of information in
Yelp-Sparse that can be successfully utilized by
BENEFICT for modeling reviews. It should be
noted that Yelp-Sparse has nearly 230 thousand re-
views, while Yelp-Dense has almost 160 thousand.
In conclusion, these results provide evidence that
our model is best equipped and capable of perform-
ing predictions regardless of a dataset’s inherent
sparsity or density.

4.3.1 Optimal Interaction Function
BENEFICT employs an MLP above the concate-
nated user-item embeddings in the shared hidden
space. We compare it against another variant of
our model, which utilizes an MLP on top of the
element-wise product of user and item represen-
tations. We examine their performances using a
different number of hidden layers [0, 3]. It should
be noted that an MLP with zero layers pertains to
the shared hidden space’s direct projection to the
prediction layer.

Figure 2 demonstrates that BENEFICT’s utiliza-
tion of concatenation exceeds the element-wise
product by a significant margin across all MLP
layers and datasets. This result verifies the pos-
itive effect of feeding the concatenated features

Figure 4: Distribution of the judges’ given usefulness
scores based on US2.

to the MLP to learn user-item interactions. Fur-
thermore, consistent with the findings of He et al.
(2017), stacking more layers is indeed beneficial
and effective for neural explicit collaborative filter-
ing as well. There appears to be a trend: increasing
the hidden layers implies decreasing (and better)
RMSE values. Simply projecting the shared hid-
den space to the prediction layer is insufficient and
weak, as evidenced by its relatively high RMSE
scores. On the contrary, using three MLP lay-
ers has generally resulted in the lowest RMSE
scores. The only exception is with the Digital Mu-
sic dataset wherein utilizing two layers produces
the best RMSE value. Furthermore, even though
the element-wise product is more inferior than con-
catenation, the former also benefits from increasing
the MLP layers. In summary, all these findings val-
idate the necessity of incorporating the MLP as an
integral part of the whole BENEFICT model.

5 Explainability Study

5.1 Human Assessment of Explanations

To validate the helpfulness of BENEFICT-
produced explanations in real life, we also gen-
erate possible explanations using TF-IDF and Tex-
tRank. Applying TF-IDF determines which words
are more favorable or relevant in a corpus of doc-
uments (Rajaraman and Ullman, 2011). To make
the assessment fair, we only select words with the
top N TF-IDF scores, where the value of N is the
same as the constraint introduced in BENEFICT’s
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Explanation US Scores

TF-IDF: Some of the tracks were really quite ... dare I say it, catchy. And there was even a Top 30-friendly

single on the album (’Only Time will tell’). But wasn’t this Carl Palmer – he of the 70s triple album and

serious devotee ofclassical percussionist James Blades? And wasn’t this also Steve Hose – he of another

70s triple album and several serious solo albums. And hadn’t John Wetton starred on the seriously serious

’Red’ in 74? How could the three come together yet produce this Adult-Oriented stadium Rock?Let’s not

forget Palmer’s beginnings in the Crazy World of Arthur Brown and Atomic Rooster. Or Wetton’sbizarre

phase with Uriah Heep. And Geoff Downes was nominally half of ’Buggles’, whose minimal output was

unashamed pop. The style of this, Asia’s debut album wasn’t a million miles from UK’s eponymous LP of

1978, although it was distinctly more mainstream.I like this album, the best of all the Asia output that I’ve

heard. I would have preferred the music to be a little more ambitious; there’s a sense in which it’s all been

concocted to maximise the commercial return, which you couldn’t say of UK. But it’s a good, undemanding

listen.

US1: 1.5
US2: 1.5

TextRank: Some of the tracks were really quite ... dare I say it, catchy. And there was even a Top

30-friendly single on the album (’Only Time will tell’). But wasn’t this Carl Palmer – he of the 70s triple

album and serious devotee of classical percussionist James Blades? And wasn’t this also Steve Hose....

US1: 2
US2: 2

BENEFICT: .....The style of this, Asia’s debut album wasn’t a million miles from UK’s eponymous LP

of 1978, although it was distinctly more mainstream.I like this album, the best of all the Asia output that I’ve

heard. I would have preferred the music to be a little more ambitious; there’s a sense in which it’s all been

concocted to maximise the commercial return, which you couldn’t say of UK.....

US1: 4
US2: 4

Table 3: Sample explanations (highlighted in yellow) generated by TF-IDF, TextRank, and BENEFICT from a
specific user review. The second column includes the average judge-given US1 and US2 scores.

explanation generation module. On the other hand,
TextRank is a fully unsupervised, graph-based ex-
tractive summarization algorithm (Mihalcea and
Tarau, 2004). Its goal is to rank entire sentences
that comprise a given review text. Also, to make
the assessment consistent, we only take the top sen-
tence with a length of less than or equal to N for
each review.

We then ask two human judges to evaluate a
total of 90 explanations, 30 explanations each for
TF-IDF, TextRank, and BENEFICT, with N = 20.
We instruct them to score each explanation based
on the following usefulness statements (US) on a
five-point Likert scale, ranging from 1 (strongly
disagree) to 5 (strongly agree).

US1: The explanation captures the essence of
the customer’s preference (like or dislike) in
the review.
US2: The explanation is helpful for you or any
customer to decide to purchase that particular
item in the future.

We further examine the human assessment re-
sults by determining the strength of agreement be-
tween the two judges. This is done by calculating

the Quadratic Weighted Kappa (QWK) statistic. It
measures inter-rater agreement and is suitable for
ordinal or ranked variables. The Kappa metric lies
on a scale of -1 to 1, where 1 implies perfect agree-
ment, 0 indicates random agreement, and negative
values mean that the agreement is less than chance,
such as disagreement. Specifically, a coefficient
of 0.01-0.20 indicates slight agreement, 0.21-0.40
implies fair agreement, 0.41-0.60 refers to mod-
erate agreement, 0.61-0.80 pertains to substantial
agreement, and 0.81-0.99 denotes nearly perfect
agreement (Borromeo and Toyama, 2015).

5.2 Explainability Results and Discussion
5.2.1 Overall Assessment
Figure 3 summarizes the judges’ given scores on
their assessment of explanations based on US1.
They find that nearly 58% of BENEFICT-derived
explanations capture the essence of the customer’s
preference (i.e., those with usefulness scores of
either four or five). It is followed by TextRank, with
almost 52% of its produced explanations, and TF-
IDF, with only 1.67% of its generated explanations.
With respect to the inter-rater agreement on US1
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in Table 5, the judges express fair agreement on
BENEFICT (having a Kappa value of 0.2019). On
the other hand, they slightly agree with each other
on both TF-IDF and TextRank, with QWK values
of 0.1924 and 0.0625, respectively. As Table 4
indicates, our model has a mean usefulness score
of 3.45, better than TextRank (3.26) and TF-IDF
(2.05).

Figure 4 shows the judges’ assessment scores
based on US2. Interestingly, the judges express
that nearly 63% of the explanations generated by
BENEFICT and TextRank are helpful for any fu-
ture customers. Upon including the low-scoring
explanations, BENEFICT is still better than Tex-
tRank; the former has a mean usefulness score of
3.61 against the latter’s 3.40. Furthermore, the
judges moderately agree as far as our model’s gen-
erated explanation is concerned (with a Kappa
value of 0.4705). At the same time, they express
less than chance agreement for TextRank (obtain-
ing a Kappa value of -0.0073). This statement
means that the large majority of TextRank’s high as-
sessment scores come from one judge alone. Lastly,
the judges observe that only 8.33% of the explana-
tions from TF-IDF are helpful, with a mean use-
fulness score of 2.18 and a QWK value of 0.1921,
which implies their slight agreement.

These results indicate that BENEFICT’s expla-
nation generation module can effectively provide
useful explanations that capture the essence of the
customer’s preference and help future customers
make purchasing decisions.

5.2.2 Specific Example Comparison
Given an example, we highlight words that serve
as the explanations in Table 3. The explanation
produced by TF-IDF can capture a few impor-
tant words, such as unashamed and undemand-
ing. However, due to its bag-of-words property,
it includes several other unnecessary words that
may not contribute to the explanation. Therefore,
the judges do not find it to be helpful. Next, the
TextRank-generated explanation also does not ap-
pear to capture the essence of the user’s like or
dislike. It does not seem useful for customers to
decide whether to purchase that item in the future.
Still, the judges give TextRank higher usefulness
scores than TF-IDF, even though the latter cap-
tures more adjectives and important words. We
attribute this to human’s natural bias toward less
noisy sentences that express complete thoughts.
Lastly, the BENEFICT-produced explanation con-

Method US1 Mean US2 Mean

TF-IDF 2.05 2.18
TextRank 3.26 3.40
BENEFICT 3.45 3.61

Table 4: Mean usefulness scores of explanations as-
sessed by the judges, based on US1 and US2.

Method US1 QWK US2 QWK

TF-IDF 0.1924 0.1921
TextRank 0.0625 -0.0073
BENEFICT 0.2019 0.4705

Table 5: The strength of inter-judge agreement for both
US1 and US2 given by the QWK values.

veys a near-complete thought; take note that it is
not a sentence but a segment of contiguous tokens
that maximize the sum of attention weights. This
enables BENEFICT to capture important phrases
such as like this album and the best of all. Hence,
the judges agree that it captures the essence of the
customer’s preference and helps customers make
purchasing decisions in the future.

6 Conclusion and Future Work

We have successfully implemented a novel rec-
ommender model that uniquely integrates BERT,
MLP, and MSP. BENEFICT’s predictive capability
is validated by experiments performed on Ama-
zon and Yelp datasets, consistently outperforming
other state-of-the-art models. Moreover, its expla-
nation generation capability is verified by human
judges. We argue that our work offers an avenue
to help bridge the research gap between accuracy
and explainability. In the future, we will consider
incorporating other neural components, such as at-
tention mechanisms, in improving the user-item
modeling process. We also intend to enhance the
expressiveness and the overall quality of the gener-
ated explanations.
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