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Abstract

In this paper, we propose second-order graph-
based neural dependency parsing using mes-
sage passing and end-to-end neural networks.
We empirically show that our approaches
match the accuracy of very recent state-of-
the-art second-order graph-based neural de-
pendency parsers and have significantly faster
speed in both training and testing. We also em-
pirically show the advantage of second-order
parsing over first-order parsing and observe
that the usefulness of the head-selection struc-
tured constraint vanishes when using BERT
embedding.

1 Introduction

Graph-based dependency parsing is a popular ap-
proach to dependency parsing that scores parse
components of a sentence and then finds the highest
scoring tree through inference. First-order graph-
based dependency parsing takes individual depen-
dency edges as the components of a parse tree,
while higher-order dependency parsing considers
more complex components consisting of multiple
edges. There exist both exact inference algorithms
(Carreras, 2007; Koo and Collins, 2010; Ma and
Zhao, 2012) and approximate inference algorithms
(McDonald and Pereira, 2006; Smith and Eisner,
2008; Gormley et al., 2015) to find the best parse
tree. Recent work focused on neural network based
graph dependency parsers (Kiperwasser and Gold-
berg, 2016; Wang and Chang, 2016; Cheng et al.,
2016; Kuncoro et al., 2016; Ma and Hovy, 2017;
Dozat and Manning, 2017). Dozat and Manning
(2017) proposed a first-order graph-based neural
dependency parsing approach with a simple head-
selection training objective. It uses a biaffine func-
tion to score dependency edges and has high effi-
ciency and good performance. Subsequent work

∗Kewei Tu is the corresponding author.

introduced second-order inference into their parser.
Ji et al. (2019) proposed a graph neural network
that captures second-order information in token
representations, which are then used for first-order
parsing. Very recently, Zhang et al. (2020) pro-
posed an efficient second-order tree CRF model for
dependency parsing and achieved state-of-the-art
performance.

In this paper, we first show how a previously pro-
posed second-order semantic dependency parser
(Wang et al., 2019) can be applied to syntactic de-
pendency parsing with simple modifications. The
parser is an end-to-end neural network derived from
message passing inference on a conditional random
field that encodes the second-order parsing prob-
lem. We then propose an alternative conditional
random field that incorporates the head-selection
constraint of syntactic dependency parsing, and
derive a novel second-order dependency parser.
We empirically compare the two second-order ap-
proaches and the first-order baselines on English
Penn Tree Bank 3.0 (PTB), Chinese Penn Tree
Bank 5.1 (CTB) and datasets of 12 languages in
Universal Dependencies (UD). We show that our
approaches achieve state-of-the-art performance on
both PTB and CTB and our approaches are signifi-
cantly faster than recently proposed second-order
parsers.

We also make two interesting observations from
our empirical study. First, it is a common belief
that contextual word embeddings such as ELMo
(Peters et al., 2018) and BERT (Devlin et al., 2019)
already conveys sufficient high-order information
that renders high-order parsing less useful, but we
find that second-order decoding is still helpful even
with strong contextual embeddings like BERT. Sec-
ond, while Zhang et al. (2019) previously found
that incoperating the head-selection constraint is
helpful in first-order parsing, we find that with a
better loss function design and hyper-parameter tun-
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ing both first- and second-order parsers without the
head-selection constraint can match the accuracy
of parsers with the head-selection constraint and
can even outperform the latter when using BERT
embedding.

Our approaches are closely related to the work
of Gormley et al. (2015), which proposed a non-
neural second-order parser based on Loopy Belief
Propagation (LBP). Our work differs from theirs
in that: 1) we use Mean Field Variational Infer-
ence (MFVI) instead of LBP, which Wang et al.
(2019) found is faster and equally accurate in prac-
tice; 2) we add the head-selection constraint and do
not include the global tree constraint that is shown
to produce only slight improvement (Zhang et al.,
2019) but would complicate our neural network
design and implementation; 3) we employ modern
neural encoders and achieve much better parsing
accuracy. Our approaches are also closely related
to the very recent work of Fonseca and Martins
(2020). The main difference is that we use MFVI
while they use the dual decomposition algorithm
AD3 (Martins et al., 2011, 2013) for approximate
inference.

2 Approach

Zhang et al. (2019) categorized different kinds of
graph-based dependency parsers based on their
structured output constraints according to the nor-
malization for output scores. A Local approach
views dependency parsing as a head-selection prob-
lem, in which each word selects exactly one depen-
dency head. A Single approach places no struc-
tured constraint, viewing the existence of each pos-
sible dependency edge as an independent binary
classification problem.

The second-order semantic dependency parser of
Wang et al. (2019) is an end-to-end neural network
derived from message passing inference on a con-
ditional random field that encodes the second-order
parsing problem. It is clearly a Single approach
because of the lack of structured constraints in se-
mantic dependency parsing. We can apply this
approach to syntactic dependency parsing with two
minor modifications. First, co-parents, one of the
three types of second-order parts, become invalid
and hence are removed. Second, for the approach
to output valid parse trees during testing, we run
maximum spanning tree (MST) (McDonald et al.,
2005) based on the posterior edge probabilities pre-
dicted by the approach.

Inspired by Wang et al. (2019), below we
propose a Local second-order parsing approach.
While the Single approach uses Boolean random
variables to represent existence of possible depen-
dency edges, our Local approach defines a discrete
random variable for each word specifying its de-
pendency head, thus enforcing the head-selection
constraint and leading to different formulation of
the message passing inference steps.

2.1 Scoring

Following Dozat and Manning (2017), we predict
edge existence and edge labels separately. Suppose
the input sentence is w = [w0, w1, w2, . . . , wn]
where w0 is a dummy root. We feed word repre-
sentations outputted by the BiLSTM encoder into
a biaffine function to assign score s(edge)

ij to edge
wi → wj . We use a Trilinear function to assign
score s(sib)

ij,ik to the siblings part consisting of edges
wi → wj and wi → wk, and another Trilinear
function to assign score s(gp)

ij,jk to the grandparent
part consisting of edges wi → wj and wj → wk.
For edge labels, we use a biaffine function to pre-
dict label scores of each potential edge and use a
softmax function to compute the label distribution
P (y(label)

ij |w), where y(label)
ij represents the possible

label for edge wi → wj .

2.2 Message Passing

The head-selection structured constraint requires
that each word except the root has exactly one head.
We define variable Xj ∈ {0, 1, 2, . . . , n} to indi-
cate the head of word wj . We then define a condi-
tional random field (CRF) over [X1, . . . , Xn]. For
each variable Xj , the unary potential is defined by:

φu(Xj = i) = exp(s
(edge)
ij )

Given two variablesXj andXl, the binary potential
is defined by:

φp(Xj = i,Xl = k) =


exp(s(sib)

ij,kl) k = i

exp(s
(gp)
ij,kl) k = j

1 Otherwise

We use MFVI for approximate inference on this
CRF. The algorithm updates the factorized poste-
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rior distribution Qj(Xj) of each word iteratively.

M(t−1)
j (i) =

∑
k 6=i,j

Q
(t−1)
k (i)s

(sib)
ij,ik

+Q
(t−1)
k (j)s

(gp)
ij,jk +Q

(t−1)
i (k)s

(gp)
ki,ij

Q
(t)
j (i) =

exp{s(edge)
ij +M(t−1)

j (i)}
n∑

k=0

exp{s(edge)
kj +M(t−1)

j (k)}

At t = 0,Q(t)
j (Xj) is initialized by normalizing the

unary potential. The iterative update steps can be
unfolded as recurrent neural network layers param-
eterized by part scores, thus forming an end-to-end
neural network.

Compared with the update formula in the Single
approach, here the posterior distributions are de-
fined over head-selections and are normalized over
all possible heads. The computational complexity
remains the same.

2.3 Learning
We define the cross entropy losses by:

L(edge) =−
∑
i

log[Qi(y
∗(edge)
i |w)]

L(label) =−
∑
i,j

1(y
∗(edge)
j = i) log(P (y∗(label)

ij |w))

L =λL(label) + (1− λ)L(edge)

where y∗(edge)
i is the head of word wi and y∗(label)

ij

is the label of edge wi → wj in the golden parse
tree, λ is a hyper-parameter and 1(x) is an indi-
cator function that returns 1 when x is true and 0
otherwise.

3 Experiments

3.1 Setups
Following previous work (Dozat and Manning,
2017; Ma et al., 2018), we use PTB 3.0 (Marcus
et al., 1993), CTB 5.1 (Xue et al., 2002) and 12
languages in Universal Dependencies (Nivre et al.,
2018) (UD) 2.2 to evaluate our parser. Punctuation
is ignored in all the evaluations. We use the same
treebanks and preprocessing as Ma et al. (2018)
for PTB, CTB, and UD. For all the datasets, we
remove sentences longer than 90 words in training
sets for faster computation.

We use GNN, Local1O, Single1O, Local2O
and Single2O to represent the approaches of Ji
et al. (2019), Dozat and Manning (2017), Dozat

Hidden Layer Hidden Sizes
Word/GloVe/Char 100
POS 50
GloVe Linear 125
BERT Linear 125
BiLSTM 3*600
Char LSTM 1*400
Unary Arc (UD) 500
Local1O/Local2O Unary Arc (Others) 450
Single1O/Single2O Unary Arc (Others) 550
Label 150
Binary Arc 150
Dropouts Dropout Prob.
Word/GloVe/POS 20%
Char LSTM (FF/recur) 33%
Char Linear 33%
BiLSTM (FF/recur) 45%/25%
Unary Arc/Label 25%/33%
Binary Arc 25%
Optimizer & Loss Value
Local1O/Local2O Interpolation (λ) 0.40
Single1O/Single2O Interpolation (λ) 0.07
Adam β1 0
Adam β2 0.95
Decay Rate 0.85
Decay Step (without dev improvement) 500
Weight Initialization Mean/Stddev
Unary weight 0.0/1.0
Binary weight 0.0/0.25

Table 1: Hyper-parameter for Local1O, Single2O and
Local2O in our experiment.

and Manning (2018), and our two second-order
approaches respectively. For all the approaches,
we use the MST algorithm to guarantee tree-
structured output in testing. We use the concatena-
tion of word embeddings, character-level embed-
dings and part-of-speech (POS) tag embeddings
to represent words and additionally concatenate
BERT embeddings for experiments with BERT.
For a fair comparison with previous work, we
use GloVe (Pennington et al., 2014) and BERT-
Large-Uncased model for PTB, and structured-
skipgram (Ling et al., 2015) and BERT-Base-
Chinese model for CTB. For UD, we use fastText
embeddings (Bojanowski et al., 2017) and BERT-
Base-Multilingual-Cased model for different lan-
guages. We set the default iteration number for our
approaches to 3 because we find no improvement
on more or less iterations.

For GNN1, we rerun the code based on the of-
ficial release of Ji et al. (2019). For Single1O,
Local1O2, Single2O3, we implement these ap-

1https://github.com/AntNLP/
gnn-dep-parsing

2https://github.com/tdozat/Parser-v3
3https://github.com/wangxinyu0922/

Second_Order_SDP

https://github.com/AntNLP/gnn-dep-parsing
https://github.com/AntNLP/gnn-dep-parsing
https://github.com/tdozat/Parser-v3
https://github.com/wangxinyu0922/Second_Order_SDP
https://github.com/wangxinyu0922/Second_Order_SDP
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PTB CTB
UAS LAS UAS LAS

Dozat and Manning (2017) 95.74 94.08 89.30 88.23
Ma et al. (2018)♠ 95.87 94.19 90.59 89.29
F&G (2019)♠ 96.04 94.43 - -
GNN 95.87 94.15 90.78 89.50
Single1O 95.75 94.04 90.53 89.28
Local1O 95.83 94.23 90.59 89.28
Single2O 95.86 94.19 90.75 89.55
Local2O 95.98 94.34 90.81 89.57
Ji et al. (2019)† 95.97 94.31 - -
Zhang et al. (2020)†‡ 96.14 94.49 - -
Local2O†‡ 96.12 94.47 - -

+BERT
Zhou and Zhao (2019)♣ 97.20 95.72
Clark et al. (2018)� 96.60 95.00 - -
Single1O 96.82 95.20 92.73 91.64
Local1O 96.86 95.32 92.47 91.30
Single2O 96.86 95.31 92.78 91.69
Local2O 96.91 95.34 92.55 91.38

Table 2: Comparison of our approaches and the previ-
ous state-of-the-art approaches on PTB and CTB. We
report our results averaged over 5 runs. †: These ap-
proaches perform model selection based on the score
on the development set. ‡: These approaches do not
use POS tags as input. �: Clark et al. (2018) uses semi-
supervised multi-task learning with ELMo embeddings.
♠: These approaches use structured-skipgram embed-
dings instead of GloVe embeddings for PTB. ♣: For
reference, Zhou and Zhao (2019) utilized both depen-
dency and constituency information in their approach.
Therefore, the results are not comparable to our results.

proaches based on the official release code of Wang
et al. (2019) and we implement Local2O based on
this code. In speed comparison, we implement
the second-order approaches based on an PyTorch
implementation biaffine parser4 implemented by
Zhang et al. (2020) for a fair speed comparison with
their approach5. Since we find that the accuracy of
our approaches based on PyTorch implementation
on PTB does not change, we only report scores
based on Wang et al. (2019).

3.2 Hyper-parameters
The hyper-parameters we used in our experiments
is shown in Table 1. We tune the the hidden size
for calculating s(edge)

ij (Unary Arc in the table) sepa-
rately for PTB and CTB. Following Qi et al. (2018),
we switch to AMSGrad (Reddi et al., 2018) after
5,000 iterations without improvement. We train
models for 75,000 iterations with batch sizes of

4https://github.com/yzhangcs/parser
5At the time we finished the paper, the official code for the

second-order tree CRF parser have not release yet. We believe
it is a fair comparison since we use the same settings and GPU
as Zhang et al. (2020).

6000 tokens and stopped the training early after
10,000 iterations without improvements on devel-
opment sets. Different from previous approaches
such as Dozat and Manning (2017) and Ji et al.
(2019), we use Adam (Kingma and Ba, 2015) with
a learning rate of 0.01 and anneal the learning rate
by 0.85 for every 500 iterations without improve-
ment on the development set for optimization. For
GNN, we train the models with the same setting
as in Ji et al. (2019). We do not use character em-
beddings and our optimization settings for GNN
because we find they do not improve the accuracy.

For the edge loss of Single approaches, Zhang
et al. (2019) proposed to sample a subset of the
negative edges to balance positive and negative
examples, but we find that using a relatively small
interpolation λ (shown in Table 1) on label loss can
improve the accuracy and the sampling does not
help further improve the accuracy.

3.3 Results

Table 2 shows the Unlabeled Attachment Score
(UAS) and Labeled Attachment Score (LAS) of all
the approaches as well as the reported scores of pre-
vious state-of-the-art approaches on PTB and CTB.
It can be seen that without BERT, our Local2O
achieves state-of-the-art performance on CTB and
has almost the same accuracy as the very recent
work of Zhang et al. (2020) on PTB. With BERT
embeddings, Local2O performs the best on PTB
while Single2O has the best accuracy on CTB.

Table 3 shows the results of the five approaches
on UD in addition to PTB and CTB. We make the
following observations. First, our second-order
approaches outperform GNN and the first-order
approaches both with and without BERT embed-
dings, showing that second-order decoders are still
helpful in neural parsing even with strong contex-
tual embeddings. Second, without BERT, Local
slightly outperforms Single, although the differ-
ence between the two is quite small6; when BERT
is used, however, Single clearly outperforms Local,
which is quite interesting and warrants further in-
vestigation in the future. Third, the relative strength
of Local and Single approaches varies over tree-
banks, suggesting varying importance of the head-
selection constraint.

6Note that Zhang et al. (2019) reports higher difference
in accuracy between first-order Local and Single approaches.
The discrepancy is most likely caused by our better designed
loss function and tuned hyper-parameters.

https://github.com/yzhangcs/parser
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PTB CTB bg ca cs de en es fr it nl no ro ru Avg.
GNN 94.15 89.50† 90.33 92.39 90.95 79.73 88.43 91.56 87.23 92.44 88.57 89.38 85.26 91.20 89.37
Single1O 94.04 89.28 90.05 92.72† 92.07 81.73 89.55 92.10 88.27 92.64 89.57 91.81 85.39 92.60 90.13
Local1O 94.23 89.28 90.30 92.56 92.15 81.42 89.43 91.99 88.26 92.49 89.76 91.91 85.27 92.72 90.13
Single2O 94.19 89.55† 90.24 92.82† 92.13 81.99† 89.64† 92.17† 88.69 92.83† 89.97† 91.90 85.53† 92.58 90.30†

Local2O 94.34†‡89.57† 90.53† 92.83† 92.12 81.73 89.72† 92.07 88.53 92.78 90.19† 91.88 85.88†‡92.67 90.35†

+BERT
Single1O 95.20 91.64† 90.87 93.55† 92.01 81.95† 90.44† 92.56† 89.35 93.44† 90.89 91.78 86.13† 92.51 90.88†

Local1O 95.32 91.30 91.03 93.17 91.93 81.66 90.09 92.32 89.26 93.05 90.93 91.62 85.67 92.51 90.70
Single2O 95.31 91.69†‡91.30† 93.60†‡92.09† 82.00†‡90.75†‡92.62†‡89.32 93.66† 91.21 91.74 86.40† 92.61 91.02†‡

Local2O 95.34 91.38 91.13 93.34† 92.07† 81.67 90.43† 92.45† 89.26 93.50† 90.99 91.66 86.09† 92.66 90.86†

Table 3: LAS and standard deviations on test sets. We report results averaged over 5 runs. We use ISO 639-1 codes
to represent languages from UD. †means that the model is statistically significantly better than the Local1O model
by Wilcoxon rank-sum test with a significance level of p < 0.05. We use ‡ to represent winner of the significant
test between the Single2O and Local2O models.

System Train Test Time Complexity
GNN 392 464 O(n2d)
Zhang et al. (2020) 200 400 O(n3)
Single1O 616 1123 O(n2)
Local1O 625 1150 O(n2)
Single2O 481 966 O(n3)
Local2O 486 1006 O(n3)

Table 4: Comparison of training and testing speed (sen-
tences per second) and the time complexity of the de-
coders of different approaches on PTB.

3.4 Speed Comparison

We evaluate the speed of different approaches on
a single GeForce GTX 1080 Ti GPU following
the setting of Zhang et al. (2020). As shown in
Table 4, our Local approach and Single approach
have almost the same speed. Our second-order
approaches only slow down the training and test-
ing speed in comparison with the first-order ap-
proaches by 23% and 12% respectively. They are
also significantly faster than previous state-of-the-
art approaches. Our Local approach is 1.2 and 2.3
times faster than GNN in training and testing re-
spectively and is 2.4 and 2.9 times faster than the
second-order tree CRF approach of Zhang et al.
(2020).

In terms of time complexity, our second-order
decoders have a time complexity of O(n3)7; while
the time complexity of GNN isO(n2d), the hidden
size d (500 by default) is typically much larger than
sentence length n; and the decoder of Zhang et al.
(2020) has a time complexity of O(n3) as well, but
it requires sequential computation over the input
sentence while our decoders can be parallelized

7The MST algorithm has a time complexity of O(n2) and
we follow Dozat et al. (2017) only using the MST algorithm
when the argmax predictions of structured output are not trees.

over words of the input sentence.

4 Conclusion

We propose second-order graph-based dependency
parsing based on message passing and end-to-
end neural networks. We modify a previous ap-
proach that predicts dependency edges indepen-
dently and also design a new approach that in-
corporates the head-selection structured constraint.
Our experiments show that our second-order ap-
proaches have better overall performance than the
first-order baselines; they achieve competitive accu-
racy with very recent start-of-the-art second-order
graph-based parsers and are significantly faster.
Our empirical comparisons also show that second-
order decoders still outperform first-order decoders
even with BERT embeddings, and that the use-
fulness of the head-selection constraint is limited,
especially when using BERT embeddings. Our
code is publicly avilable at https://github.com/
wangxinyu0922/Second_Order_Parsing.
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