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Abstract

With the renaissance of deep learning, neural
networks have achieved promising results on
many natural language understanding (NLU)
tasks. Even though the source codes of many
neural network models are publicly available,
there is still a large gap from open-sourced
models to solving real-world problems in en-
terprises. Therefore, to fill this gap, we intro-
duce AUTONLU, an on-demand cloud-based
system with an easy-to-use interface that cov-
ers all common use-cases and steps in devel-
oping an NLU model. AUTONLU has sup-
ported many product teams within Adobe with
different use-cases and datasets, quickly deliv-
ering them working models. To demonstrate
the effectiveness of AUTONLU, we present
two case studies. i) We build a practical NLU
model for handling various image-editing re-
quests in Photoshop. ii) We build powerful
keyphrase extraction models that achieve state-
of-the-art results on two public benchmarks.
In both cases, end users only need to write a
small amount of code to convert their datasets
into a common format used by AUTONLU.

1 Introduction

In recent years, many deep learning methods have
achieved impressive results on a wide range of
tasks, ranging from question answering (Seo et al.,
2017; Lai et al., 2018b) to named entity recogni-
tion (NER) (Lin et al., 2019; Jiang et al., 2019) to
intent detection and slot filling (Wang et al., 2018;
Chen et al., 2019). Even though the source codes of
many models are publicly available, going from an
open-sourced implementation of a model for a pub-
lic dataset to a production-ready model for an in-
house dataset is not a simple task. Furthermore, in
an enterprise, only few engineers are familiar with

∗Equal contributions. The work was conducted while the
first two authors interned at Adobe Research.

deep learning research and frameworks. There-
fore, to facilitate the development and adoption of
deep learning models within Adobe, we introduce a
new system named AUTONLU. It is an on-demand
cloud-based system that enables multiple users to
create and edit datasets and to train and test dif-
ferent state-of-the-art NLU models. AUTONLU’s
main principles are:

• Ease of use. AUTONLU aims to help users
with limited technical knowledge to train and
test models on their datasets. We provide GUI
modules to accommodate the most common
use-cases, from creating/cleaning a dataset to
training/evaluating/debugging a model.
• State-of-the-art models. Users should not

sacrifice performance for ease-of-use. Our
built-in models provide state-of-the-art per-
formance on multiple public datasets. AU-
TONLU also supports hyperparameter tuning
using grid search, allowing users to fine-tune
the models even further.
• Scalability. AUTONLU aims to be deployed

in enterprises where computing costs could be
a limiting factor. We provide an on-demand ar-
chitecture so that the system could be utilized
as much as possible.

At Adobe, AUTONLU has been used to train
NLU models for different product teams, ranging
from Photoshop to Document Cloud. To demon-
strate the effectiveness of AUTONLU, we present
two case studies. i) We build a practical NLU
model for handling various image-editing requests
in Photoshop. ii) We build powerful keyphrase ex-
traction models that achieve state-of-the-art results
on two public benchmarks. In both cases, end users
only need to write a small amount of code to con-
vert their datasets into a common format used by
AUTONLU.
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2 Related work

Closely related branches of work to ours are toolk-
its and frameworks designed to provide a suite of
state-of-the-art NLP models to users (Gong et al.,
2019; Akbik et al., 2019; Wang et al., 2019; Zhu
et al., 2020; Qi et al., 2020). However, several
of these works do not have a user-friendly inter-
face. For example, Flair (Akbik et al., 2019),
NeuronBlocks (Gong et al., 2019), and jiant
(Wang et al., 2019) require users to work with
command-line interfaces. Different from these
works, an end-user with no programming skill can
still create powerful NLU models using our sys-
tem. Furthermore, most previous works are not
explicitly designed for enterprise settings where
use-cases and business needs can be vastly differ-
ent from team to team. On the other hand, since
AUTONLU is an on-demand cloud-based system,
it provides more flexibility to end users.

In 2018, Google introduced AutoML Natural
Language1, a platform that enables users to build
and deploy machine learning models for various
NLP tasks. Our system is different from AutoML
in the following aspects. First, AutoML uses neural
architecture search (NAS) (Elsken et al., 2019) to
find the best model for the task of interest. As users
are not allowed to simply choose an existing archi-
tecture, the process can be time-consuming even for
simple tasks (e.g., 2∼3 hours). On the other hand,
AUTONLU provides a rich gallery of existing ar-
chitectures for NLU. In future work, we are also
planning to integrate NAS into AUTONLU. Sec-
ond, as a self-hosted solution, AUTONLU provides
product teams of Adobe with total control over
their datasets and trained models. This enhances
privacy and provides more flexibility at the same
time. For example, as of writing, there is no way to
download a trained model from AutoML to a local
machine to use it for a subsequent task. AUTONLU
supports it out-of-the-box.

3 AUTONLU

3.1 Components and architecture

Figure 1 shows the overall architecture of our sys-
tem. There are 3 main components:
• A web application that serves as the frontend

to the users. The most important component
of the application is a Scheduler that moni-

1https://cloud.google.com/
natural-language
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Figure 1: AUTONLU architecture. In the figure is the
dataflow when the user calls to the /test endpoint.

tors the status of the cluster, then assigns jobs
to the most appropriate instances, as well as
spawns more/shuts off instances based on the
workload to minimize the computing costs.
The user interface is discussed in more detail
in Section 3.3.
• A cloud storage system that stores datasets,

large pre-trained language models (e.g., BERT
(Devlin et al., 2018)), trained NLU models,
and models’ metadata. We use Amazon S3 as
our storage system, due to its versioning sup-
port and data transfer speed to EC2 instances.
• An on-demand cluster that performs the ac-

tual training and testing. While the Lambda
computing model seems to be a better fit at
first thought, after careful consideration, we
choose EC2 instances to prioritize user ex-
perience over some costs: in our setting, we
have multiple concurrent users with small to
medium datasets. If the training itself takes
only 10 minutes, any amount of wait time is
significant. By maintaining a certain number
of always-on instances, users will always have
instant interaction with the system without any
delay. Cluster’s instances are initiated using
prebuilt images, which we discuss in Section
3.2.

3.2 Instance image

Regardless of the underlying model, in each pre-
built image, an included webserver is configured to
serve the following endpoints:
• /train that connects to the training code of

the underlying model.
• /is free that returns various information

about the utilization of the instance (e.g, GPU
memory usage).
• /test that connects to the testing code of

the underlying model.
• /notebook that connects to the Jupyter Lab

notebook’s URL packaged in the image.

https://cloud.google.com/natural-language
https://cloud.google.com/natural-language
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Figure 2: Dataset view of AUTONLU.

Each image also exposes an SSH connection, au-
thenticated using LDAP. Experienced users can
also make use of the packaged TensorBoard to
monitor the training process.

3.3 User Interface
3.3.1 Dataset Tool
Public and internal datasets come in many different
formats, as they may have been collected for many
years and annotated in different ways. To mitigate
that, we develop an intermediate representation
(IR) that is suitable for many NLU tasks and write
frontends to convert common dataset formats to
said IR. We also provide a converter that converts
this IR back into other dataset formats, making
converting a dataset from one format to another
trivial. In our setting (an enterprise environment),
a dataset frontend converter is the only part that
may need to be written by an end-user, and we
believe that it is significantly simpler than building
the whole NLU pipeline.

Figure 2 shows the dataset view. Visualizing and
editing datapoints are straightforward, and do not
depend on the source/target dataset format (Figure
3). While it is not common to edit a public dataset,
the same is typically not true for internal datasets.
Internal datasets may need to be modified and ex-
panded based on business needs and use-cases.

3.3.2 Analysis Tool
We include TensorBoard in our prebuilt images to
display common training metrics. However, since
our main users are typically product teams with
limited experience in machine learning, we also
develop interactive views to analyze the trained re-
sults. For example, Figure 4 shows our interactive
confusion matrix view: rather than just knowing
that there are 14 instances in which a mention with

Figure 3: Edit/Add a datapoint.

Figure 4: An example interactive confusion matrix.

the label “Person” is misclassified as “Location”,
users can click on a cell in the matrix to see which
instances are misclassified. This is even more im-
portant for internal datasets: the errors may actually
be in the dataset instead of the model, and we can
catch it using this view. In fact, as we will demon-
strate in Section 4.1, we have caught many labeling
errors in our internal datasets using this tool.

3.3.3 Resource Management Tool
In most use-cases, AUTONLU automatically han-
dles resource management for the users. However,
if an advanced user wants to manually manage
instances’ life cycle, assign a task to a specific in-
stance, or to debug an instance, we provide a GUI
to do so as well. Concretely, we provide the follow-
ing functionalities:
• Create an instance with a desired hardware

configuration and docker image. By default,
AUTONLU creates an instance with 4 CPU
cores, 8 GBs of RAM, and 1 NVIDIA V100
GPU, which are all configurable to the user’s
desire. The default docker image is the one
containing all the supported models, but users
can choose from one of the prebuilt images
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that contains just a single model if that’s their
use-case.
• Assign a task to an instance. During training

and testing, users can choose whether to let
AUTONLU to distribute the task or to assign
the task to a specific instance: it is common
for a product team to reserve a few instances
for themselves and want to use just those in-
stances.
• Access an instance’s shell and files. Since

Ease-of-use is one of our core design princi-
ples, we package in all of our prebuilt images
a Jupyter Lab server, with the intention of us-
ing it as a lightweight IDE/shell environment.
While we also expose SSH connection to each
instance, we expect users to find the Jupyter
Lab a more friendly approach.

4 Case studies

4.1 NLU Models for Image-Editing Requests

One of the first clients of AUTONLU was the
Photoshop team, as we want to build a chat-
bot using their image-editing requests dataset
(Manuvinakurike et al., 2018; Brixey et al., 2018).
The dataset was collected in many years, annotated
both using Amazon Mechanical Turk and by our
in-house annotators. Cleaning this dataset is a chal-
lenge in itself, and in this case study, we aim to
create an effective workflow to train a state-of-the-
art model and clean the dataset at the same time.

We first convert the dataset into our IR, and train
a simple model using the fastest algorithm provided
by AUTONLU. This initial model provides us with
a rough confusion matrix, and we manually inspect
cells with the biggest values. Those cells give us an
insight into some systematic labeling errors, such
as in Figure 5. We then fix those labeling errors,
either by using the dataset interface in AUTONLU
, or by writing scripts. With this new dataset, we
retrain another model and repeat the process.

Once the fast model performance is comparable
to its performance on some public datasets, such
as ATIS (Hemphill et al., 1990), we switch to train
and fine-tune a bigger model. More specifically, we
employ a joint intent classification and slot filling
model based on BERT (Chen et al., 2019), which
is already implemented in AUTONLU. By the end
of this process, we end up with a powerful NLU
model, as reported in Table 1, and a cleaned dataset
that is useful for subsequent tasks. The NLU model
created using AUTONLU outperforms a compet-

True l a b e l : B−a d j u s t b r i g h t n e s s
Pred l a b e l : B−a d j u s t c o l o r
[ [ CLS ] l i g h t ## en t h e v e g e t a b l e s [ SEP ] ]
[ [ CLS ] make t h e d i r t d a r k e r i n brown

c o l o r [ SEP ] ]

Figure 5: 2 labeling errors captured by the interactive
confusion matrix near the end of the training-cleaning
process. The ## is the artifact from BERT tokenizer.

Model
Metrics

Intent SP SR SF1
JIS (2016) 0.832 0.850 0.726 0.783

RASA 0.924 0.833 0.605 0.701
AUTONLU 0.954 0.869 0.854 0.862

Table 1: Results on the image-editing requests dataset.
Intent accuracy, slot precision, slot recall, and slot F1
scores are reported. Scores of our models are averaged
over three random seeds.

ing model created using RASA (Bocklisch et al.,
2017) and a joint model of intent determination
and slot filling (JIS) (Zhang and Wang, 2016) by a
large margin.

4.2 Keyphrase Extraction Models

Keyphrase extraction is the task of automatically
extracting a small set of phrases that best describe
a document. As keyphrases provide a high-level
summarization of the considered document and
they give the reader some clues about its contents,
keyphrase extraction is a problem of great interest
to the Document Cloud team of Adobe. In this case
study, we aim to develop an effective keyphrase
extraction system for the team.

Similar to recent works on keyphrase extraction
(Sahrawat et al., 2020), we formulate the task as a
sequence labeling task. Given an input sequence of
tokens x = {x1, x2, ..., xn}, the goal is to predict
a sequence of labels y = {y1, y2, ..., yn} where
yi ∈ {B,I,O}. Here, label B denotes the begin-
ning of a keyphrase, I denotes the continuation
of a keyphrase, and O corresponds to tokens that
are not part of any keyphrase. This formulation is
naturally supported by our platform, as the task of
slot filling in NLU is basically a sequence label-
ing task. We first collect two public datasets for
keyphrase extraction: Inspec (Hulth, 2003) and SE-
2017 (Augenstein et al., 2017). We then convert
them to the common intermediate representation.
After that, we simply use AUTONLU to train and
tune models. We employ the BiLSTM-CRF archi-
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Model
Datasets

Inspec SE-2017
KEA (2005) 0.137 0.129

TextRank (2004) 0.122 0.157
SingeRank (2008) 0.123 0.155
SGRank (2015) 0.271 0.211

Transformer (2020) 0.595 0.522
BERT (AUTONLU) 0.596 0.537

SciBERT (AUTONLU) 0.598 0.544

Table 2: Results on Inspec and SE-2017 datasets. F1
scores are reported. Scores of our models are averaged
over three random seeds.

tecture (Huang et al., 2015) that is already available
in AUTONLU. We experiment with two different
pre-trained language models as the first embedding
layer: BERT (Devlin et al., 2018) and SciBERT
(Beltagy et al., 2019). Table 2 shows the results on
the datasets. We see that both models created us-
ing AUTONLU outperform previous models for the
task, achieving new state-of-the-art results. As AU-
TONLU can automatically perform hyperparame-
ter tuning using grid search, models produced by
AUTONLU typically have satisfying performance
(assuming that the selected underlying architecture
is expressive enough). It is worth noting that during
this entire process, the only code we need to write
is for converting the Inspec and SE-2017 datasets
to the IR.

5 Conclusion

In this work, we introduce AUTONLU, an on-
demand cloud-based platform that is easy-to-use
and has enabled many product teams within Adobe
to create powerful NLU models. Our design princi-
ples make it an ideal candidate for enterprises who
want to have an NLU system for themselves, with
minimal deep learning expertise. AUTONLU ’s
code is in the process to be open-sourced, and we
invite contributors to contribute. In future work,
we will implement more advanced features such as
transfer learning, knowledge distillation and neu-
ral architecture search, which have been shown to
be useful in building real-world NLP systems (Lai
et al., 2018a; Jiang et al., 2019; Lai et al., 2019,
2020; Klyuchnikov et al., 2020). Furthermore, we
will extend our system to have more advanced ana-
lytics features (Murugesan et al., 2019), and to bet-
ter support other languages (Nguyen and Nguyen,
2020).
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