
FBK’s Neural Machine Translation Systems for IWSLT 2016

M. Amin Farajian1,2, Rajen Chatterjee1,2, Costanza Conforti3, Shahab Jalalvand1,2, Vevake Balaraman2,
Mattia A. Di Gangi1,2, Duygu Ataman1,2, Marco Turchi1, Matteo Negri1, Marcello Federico1

1Fondazione Bruno Kessler, Trento, Italy
2ICT Doctoral School, University of Trento, Italy

3Ludwig-Maximilian University of Munich, Germany
federico@fbk.eu

Abstract
In this paper, we describe FBK’s neural machine transla-
tion (NMT) systems submitted at the International Workshop
on Spoken Language Translation (IWSLT) 2016. The sys-
tems are based on the state-of-the-art NMT architecture that
is equipped with a bi-directional encoder and an attention
mechanism in the decoder. They leverage linguistic infor-
mation such as lemmas and part-of-speech tags of the source
words in the form of additional factors along with the words.
We compare performances of word and subword NMT sys-
tems along with different optimizers. Further, we explore
different ensemble techniques to leverage multiple models
within the same and across different networks. Several re-
ranking methods are also explored. Our submissions cover
all directions of the MSLT task, as well as en-{de, fr} and
{de, fr}-en directions of TED. Compared to previously pub-
lished best results on the TED 2014 test set, our models
achieve comparable results on en-de and surpass them on en-
fr (+2 BLEU) and fr-en (+7.7 BLEU) language pairs.

1. Introduction
This paper reports on our first participation at IWSLT with
neural machine translation (NMT) systems. This activity was
carried out during a Summer project involving both members
of FBK’s HLT-MT research unit and internship students.1

The main goal of the project was to gain knowledge on
the Theano library and the sequence-to-sequence translation
model by [1], also implemented in the Nematus toolkit [2].
During the project we explored different alternatives related
to data selection, pre-/post-processing of the network’s in-
put/output data, training modalities of the network and, fi-
nally, decoding and re-scoring methods applied during the
inference step. In this paper, we summarise our experience
by reporting both on approaches that showed to be benefi-
cial to the system performance, as well as on methods that
apparently did not work as we expected.

1The first two authors contributed equally. The following authors con-
tributed while attending a Summer internship with the HLT-MT research
unit of FBK: Costanza Conforti, Ludwig-Maximilian University of Munich
(Germany), Mattia di Gangi, University of Palermo (Italy), Vevake Balara-
man, University of Trento (Italy).

For IWSLT, we developed systems for the TED and
the Microsoft Speech Language (MSLT) tasks of the MT
track, in particular for the English-{German, French} and
{German, French}-English directions. For each language
pair we first developed generic systems that we trained on a
mix of in-domain and out-domain data. Successively, generic
systems were adapted to each task by using in-domain train-
ing data. Out-domain training data was actually selected in
order to improve training effectiveness both in terms of trans-
lation quality and time. We employed word and factored
models (lemma, POS) to represent the source text. We also
trained a NMT network generating translations from right
to left that we used to re-score the conventional left-to-right
model. We optimized our networks with the Adagrad opti-
mizer [3] as this provided faster convergence compared to
Adadelta in our preliminary experiments (see § 5). Finally,
we applied ensemble decoding both intra- and inter-network.

This paper is arranged as follows. We first describe in
general the followed NMT approach. Then, we summarize
the data selection and pre-processing steps applied on the
task data, as well as the overall experimental set-up for our
NMT systems. Finally, we present the experimental results
of the submitted systems, followed by a section surveying
the approaches we tried but that did not show to improve
systems’ performance.

2. Neural Machine Translation
We develop our NMT systems around the sequence-to-
sequence encoder-decoder architecture proposed in [1] and
further developed by [4, 5]. The architecture is summarized
in the time-unfolded representation shown in Figure 1. In
the left-bottom rectangle we see the encoder network, which
reads one input word at a time (we omitted the one-hot vec-
tor representation for the sake of space), encodes it into an
embedding vector and further encodes it together with its
left (right) context into an forward (backward) hidden state.
Once the full input has been read, the decoder network (on
the right side, in lighter gray) starts generating the transla-
tion. The first word is generated by initializing the output
sequence with the start symbol <s>, which is mapped to
an embedding, and further encoded into a (recursive) hid-



den state, which also depends on a linear combination of the
bidirectional hidden states of the encoder. The weights of
this combination are computed by another network, called
attention model, which is not shown in the picture.

The hidden state is mapped into a probability distribution
over the output vocabulary, via a scoring matrix and a soft-
max operator. The most probable word (il) is selected as the
first output and is used as input for the next inference step.
The process continues until the sentence boundary symbol
(<s>) is emitted. In fact, the real picture is slightly more
complicated than the one shown in Figure 1: a beam of k top
probable words is picked and used to infer the top k words
of the next output word.

In the following we provide a mathematical definition of
the computations carried out by the network. Neural machine
translation aims to optimize the parameters of the model to
maximize the likelihood of the training data. The ultimate
goal is to estimate a conditional probability model pΘ(y|x),
where Θ is the parameter set of the model (the weights and
biases of the network), y is a target sentence and x is a source
sentence. Thus, the objective function is:

argmax
Θ

1

N

N∑
n=1

log(pΘ(yn|xn)); (1)

where N is the total number of sentence pairs in the training
corpus. The conditional probability is computed as:

pΘ(y|x) =

Ty∏
t=1

pΘ(yt|y<t, x) (2)

where Ty is the number of words in the target sentence. The
probability of target word yt, given all the previous target
words y<t and the source x, is modelled by the decoder net-
work as follows:

pΘ(yt|y<t, x) = g(ẏt−1, st, ct) (3)

where ẏt−1 is the word embedding of the previous target
word, st is the hidden state of the decoder, and ct the source
context vector (encoding of the source sentence x) at time t.
The decoder state st is computed by a gated recurrent unit
(GRU) [6] in two steps: first, i) the previous hidden state and
the previous target word embedding are used to compute an
intermediate hidden state by a GRU unit:

s′t = f ′(st−1, ẏt−1) (4)

then, ii) the intermediate hidden state and the source context
vector are passed to another GRU to compute the final hidden
state of the decoder. In short:

st = f(s′t−1, ct) (5)

The source context vector is a weighted sum of all the hidden
states of a bi-directional encoder [1].2

ct =

Tx∑
j=1

atjhj (6)

2In rest of the paper, by encoder we mean bi-directional encoder

where atj is the attention weight given to the j-th encoder
hidden state at decoding time t, and Tx is the number of
words in the source sentence. The attention weight repre-
sents the importance of the j-th hidden state of the encoder
in generating the target word of time t. It is drawn from a
probability distribution over all the hidden states of the en-
coder, which is computed by applying a softmax operator
over all the scores of the hidden units of the encoder.

atj =
exp(etj)∑Tx

k=1 exp(etk)
(7)

where etj and etk are the score of the j-th and k-th hidden
units of the encoder at time step t, which is a function of
the intermediate hidden state of the decoder (as mentioned
in Equation 4) and the hidden state of the encoder, as shown
below:

etj = a(s′t−1, hj) (8)

The hidden state hj of the j-th source word is a concatenation
of the hidden states of the forward and backward encoders:

hj = [
−→
hj ;
←−
hj ] (9)

where
−→
hj and

←−
hj are the hidden state of the forward and back-

ward encoders, respectively. These hidden states are com-
puted by the GRU unit that takes previous/next hidden state
and the word embedding of the j-th source word.

−→
h j = f(ẋj ,

−→
h j−1) (10)

←−
h j = f(ẋj ,

←−
h j+1) (11)

3. Data Selection and Pre-processing
It has been shown that deep neural networks can take advan-
tage of large training corpora [4, 7]. However, finding a large
amount of in-domain training data is very challenging, if not
impossible, while it is much easier to find large generic paral-
lel corpora. In practice, a NMT system can be first trained on
a large generic corpus and then adapted on the available in-
domain/task-specific data. We applied this two-stage training
procedure for all our submissions.

In order to build a generic system, we pooled all the per-
missible data sets, including the in-domain data. We pre-
processed this data to normalize punctuations, remove spe-
cial characters, tokenize, truecase, remove empty lines as
well as sentences with lengths greater than 80 and also the
ones with length ratio greater than (1:9). The pooled data
was further filtered by removing sentence pairs for which
the out-of-vocabulary word rate of either the source or the
target sentence was higher than a given threshold (10% for
English-German, and 5% for English-French). The reference
vocabularies used for this step will be explained later in this
section. This resulted in generic domain corpora of size 14M
and 54M sentence pairs for the English-German and English-
French language pairs, respectively. Unfortunately, training



the cat on the mat <s>

il

il

gatto

gatto

sul

sul

tappeto

tappeto

<s>

+

Figure 1: Time unfolded representation of the neural MT encoder-decoder architecture with bi-directional hidden states and
attention model.

English-French NMT systems with such a large data set was
not considered feasible given our time constraints. Hence,
a further data selection step was applied for this language
pair, in which 15.5M sentence pairs were selected using the
bilingual cross-entropy approach3 [8]. The statistics of the
generic corpora are presented in Table 1.

While for the TED task both training and development
data was supplied to the participants, for the MSLT task only
development data was provided. Hence, we decided to use
data from the OpenSubtitles corpus4, a large collection of
translated movie subtitles, as in-domain training data for the
MSLT task. From this corpus we removed sentences longer
than 20 words as well as sentence pairs with length ratio
larger than 1:1.2. These choices are motivated by the statis-
tics of the development corpora, which contain short sen-
tences with average length of ∼10 words and source/target
length ratio of ∼1.2.

The development sets of the TED task consist of the pre-
viously released development and test corpora, except for
tst2014 which the organisers reserved for progress testing
purposes. For the MSLT task, a subset of 1,000 sentences
was randomly selected from the released development cor-
pora to decide about the early stopping, and the rest was used
to compare the performance of the systems for each language
direction [9].

Vocabularies for each direction were created by using
both in-domain and out-domain corpora. First, the vocabu-
laries were initialized with all the words occurring more than
three times in the in-domain corpora, resulting in vocabu-
laries of size 26k, 32k, and 30k for English, German, and
French languages, respectively. Then, the most frequent new
words found in the out-domain corpora were added, until the
vocabulary reached the desired size.

3https://github.com/rousseau-lium/XenC
4http://opus.lingfil.uu.se/OpenSubtitles2016.

php

Segments Tokens Types

English-German En 14.1M 175.9M 527K
De 166.1M 1,027K

English-French En 15.5M 233.3M 352K
Fr 247.4M 347K

Table 1: Statistics of the parallel corpora used to train
generic NMT systems.

4. Experimental Setup
All the experiments reported in this paper were conducted
with the Nematus toolkit5, which is an enhanced version of
the code provided in the DL4MT tutorial.6 It is based on the
Theano deep learning framework [10], and contains all the
necessary scripts to train and test NMT systems. We used
the modified version of the byte pair encoding (BPE) com-
pression algorithm [11] that works at the character level,7 to
perform experiments with subwords as proposed in [5]. This
algorithm iteratively merges the most frequent pair of sym-
bols (in this case character or sequence of characters) into a
single symbol. Thus, the most frequent words in the corpus
remain intact whereas the rare words are segmented into sub-
units. Our preliminary experiments on words and subwords
were performed on pool-balanced data, which contain out-
domain data and multiple copies of the in-domain data, so
as to reach a size comparable to that of the out-domain data.
The reason behind this choice is twofold: i) to avoid the net-
work being biased to the large out-domain corpus, and ii) to
obtain more realistic learning curves in shorter time, com-
pared to the case of training a generic system for several
weeks and then adapting it to the task. These experiments
were performed on en-de direction with both Adadelta and

5https://github.com/rsennrich/nematus
6https://github.com/nyu-dl/dl4mt-tutorial
7https://github.com/rsennrich/subword-nmt



Adagrad optimizers with learning rates set to 0.01, to inves-
tigate which combination gives the best performance. Since
we participated in two tasks, it was not feasible to train sys-
tems with pool-balanced data for each of them separately.
Rather, we decided to train a generic system for each direc-
tion that was later adapted to a task using in-domain data.

Domain adaptation to the TED task was performed from
two different checkpoints of the generic systems (using the
best model of the second and third epoch), whereas for MSLT
only the single best model was used. For the TED task the
batch size was set to 100 with max sentence length to 75,
whereas for MSLT the max sentence length was set to 20
and the batch size to 600. In addition to word level systems,
we built factored NMT systems as proposed in [2] to explic-
itly provide linguistic knowledge to the network. The factors
(lemmas and part-of-speech tags) were generated by tagging
the source corpora with Treetagger [12].8 The common ex-
perimental configurations are provided in Table 2.

The models of the general and in-domain systems were
saved and evaluated at intervals of 10,000 and 2,000 updates,
respectively. Evaluation was performed over the dev sets
with the BLEU score [13]. The best model of each config-
uration was further evaluated on tst2014 using the IWSLT
evaluation server,9 and compared with the best results of the
previous years.

Type Value
source vocab size 40,000
target vocab size 40,000
word embedding 1024
hidden units 1024
learning rate 0.01
optimizer Adagrad
shuffle True
source dropout 0.1
target dropout 0.1
hidden dropout 0.2
embedding dropout 0.2

Table 2: Training configuration used for all our systems.

5. Experiments and Results

In this section, we first discuss the preliminary experiments
that were performed in order to compare i) subword ver-
sus word-based NMT, and ii) Adagrad versus Adadelta op-
timization. We then discuss further experiments that were
performed using different input/output configurations.

8http://www.cis.uni-muenchen.de/˜schmid/tools/
TreeTagger/

9http://hlt-services5.fbk.eu/iwslt/Eval.html

5.1. Words versus sub-words

One of the most challenging problems in NMT is to deal with
large source and target vocabularies. In practice, the vocab-
ulary size in NMT is often set to 30K-50K words to bound
training time and memory consumption. This problem has
been addressed in several recent works, in which different
word segmentation methods were explored, at character level
[14], at subword level [5], and at hybrid levels [15]. These
solutions are especially useful when working with broad do-
mains, such as news, where the vocabulary growth is faster
and the coverage given by a 50K vocabulary is rather low.
Actually, for TED and MSLT tasks we found that the top
most frequent 40,000 words provide a coverage of 96% -
99% on the training data for the two considered translation
directions. This raises the question of whether segmenting
words into sub-word units is worth or not. To answer this
question, we performed preliminary experiments and com-
pared word-level and sub-word-level NMT systems, using
Adadelta and Adagrad optimization techniques. In the exper-
iments with sub-words, 40K merge rules were learned and
applied on the training data. All the experiments were run
with pool-balanced data and evaluated every 10K updates up
to one training epoch (∼140K updates, which took ∼4 days
on a Tesla K80 GPU).10 Figure 2 shows the learning curves
of these experiments.

We noticed that the word level NMT systems performed
better than the sub-word ones, with both optimizers. It is pos-
sible that, in long run after many epochs, both word and sub-
word models reach similar performance but based on these
observations (on 1 epoch) we decided to go for the word
models for all the following experiments. It is also evident
from Figure 2 that Adagrad outperforms Adadelta, both in
the word and sub-word experiments, showing also faster con-
vergence. This motivates our choice of always applying this
method henceforth.

5.2. Word and factored models

Previous work has shown that enhancing a NMT system with
linguistic features can improve its performance [2]. So, we
trained several factored NMT systems along with one word-
level system for each translation direction, as detailed below:

• Word: The input consist of only sequence of words,
and the distributed representation of the word in this
category has the highest degree of freedom to leverage
all the dimensions (1024) to encode the word in the
vector space.

• Factor-1: Each word of the input sequence is anno-
tated by its lemma and POS tag. The word embedding
(1024 dimensions) is exclusively shared by all the fac-
tors, where word, lemma, and POS occupy 904, 110,
and 10 dimensions, respectively.

10Experiment on sub-word units with Adagrad crashed after 80k updates
so we can report only scores up to 80k updates



Figure 2: Learning curve of word and sub-word NMT sys-
tems (en-de) when trained with Adadelta and Adagrad opti-
mizers

• Factor-2: In Factor-1, lemma uses a small portion
(∼11%) of the embedding vector, which gives a low
importance to this feature. However, lemmas can be
very useful for translating rare words or even unknown
words (if their lemma is known), since they generally
are more frequent than the words. So, to give more em-
phasis to lemmas, we alter the dimensions to 599, 415,
and 10 for word, lemma, and POS factors, respectively.
We increased the dimension of lemma by borrowing
it from words because we wanted to study the impact
of having different dimensions for word and lemma
when the total embedding dimension is fixed to 1024.
It might be better to have additional components for
the lemma instead of borrowing them from the word
but this increases the total number of parameters of the
network, which eventually increases the training time
and memory requirements.

• Factor-2-rev: All the above models generate the trans-
lation hypothesis in left-to-right (L2R) order. To re-
rank the n-best list obtained from these models, a re-
versed model is trained following the approach pro-
posed in [7], which produces the translation output in
reverse order (R2L). In this experiment, we used the
same configuration as Factor-2, because in our prelim-
inary experiments we observed this setting had slightly
better performance than Factor-1 for the en-de direc-
tion.

Results of the experiments with different word/factor repre-

sentations are reported in Table 3. To have a fair comparison,
we evaluated on development set of the TED task the first 10
models, that were saved every 2,000 updates in the adapta-
tion stage. We observe that Factor-1 consistently performs
better than other representations across all the language di-
rections. Increasing the embedding size of lemma at the cost
of word embedding (in Factor-2) did not yield improvement
over Factor-1. However, we observed that when training the
generic system for en-de, Factor-2 had slightly better perfor-
mance than Factor-1, and that was the motivation of train-
ing a reverse model with Factor-2. The reverse model per-
forms slightly better than the word model when translating
into English. It might be possible that generating text in re-
verse order is more difficult for German and French. As a

en-de de-en en-fr fr-en
Word 29.43 34.89 40.82 39.84
Factor-1 29.51 35.49 41.33 40.85
Factor-2 29.47 35.00 40.74 40.46
Factor-2-rev 28.09 35.19 39.98 40.19

Table 3: Performance on development set for TED task

term of comparison with previously published best results,
we selected the best model across all the representations and
evaluated them on test 2014 (results reported in Table 4). Our
single best model significantly outperforms previously pub-
lished best results on en-fr and fr-en directions, however, for
the en-de and de-en directions our model still remains below
state-of-the-art results.

5.3. Ensemble decoding

As shown in the literature, ensemble decoding typically im-
proves performance over the single models [4, 7, 15]. In
this work, we investigated different ensemble decoding tech-
niques:

• Intra-network: uses multiple models of the same net-
work. To evaluate this technique, we performed two
independent runs using the last 4 models, as well as the
best 4 models of the same network. Both runs showed
marginal improvements of 0.1 - 0.3 BLEU score over
the single models. This can be due to the fact that mod-
els of the same network are less diverse, and do not
provide any additional information to the decoder.

• Inter-network: uses models from different networks.
Unlike intra-network decoding, the models used in this
approach are selected from different networks, which
leads in having more diverse models. In our experi-
ments, we observed 0.5 - 1.0 BLEU score improve-
ment by selecting the best model from each network
(that is ensemble of 3 models). However, using mul-
tiple models from each network (4 from each, so a to-
tal of 12 models) did not yield further improvements.
This technique is also evaluated on test 2014 of TED



task, in which 2 best models of each network (one
from each checkpoint) are used in ensemble. As ex-
pected, this technique outperforms the intra-network
decoding with improvements of 0.5 - 1.0 BLEU score
over the single models, across different language di-
rections. We observe that using this technique helps to
reach the performance of the best system of 2015 in
en-de direction, which used an ensemble of 8 models
trained with different attention mechanisms [4].

5.4. Re-ranking with Right-To-Left model

Sennrich et al. report significant improvements by re-scoring
the n-best hypotheses of L2R models using R2L models,
followed by re-ranking [7]. Following their approach, we
trained a reverse model for each direction and used it to re-
score the n-best hypotheses of the ensemble models. The
re-scored list was then re-ranked by linear interpolation of
the model scores (equally weighing both L2R and R2L mod-
els) to select the best hypothesis. Due to time constraints,
the R2L models were trained for 2 epochs on the pool data
and later adapted to the TED task only. Although, the perfor-
mance of R2L models is lower than their L2R counterparts,
they showed consistent improvements across all language di-
rections when used in re-ranking, as reported in Table 4.

en-de de-en en-fr fr-en
Previous best 27.58 26.18 36.99 32.92
Single best 26.44 23.02 37.78 39.77
Ensemble 27.17 23.55 38.74 40.44
Re-rank 27.32 23.75 39.04 40.64

Table 4: Performance on IWSLT 2014 TED test set

5.5. Official submissions

The official submissions of each task are described below,
and the results are reported in Table 5:

• TED: As reported in § 5.4, the best system is the
one that uses re-ranking on the n-best list of ensemble
models, so we use it as our primary submission. To
summarize, our primary submission for each language
direction consists of an ensemble of 6 L2R models (2
best from each Word, Factor-1, and Factor-2) that is
re-scored by the best R2L model and then re-ranked
by equally weighing all the model scores. Contrastive
submissions use only ensemble of L2R models with-
out any re-scoring/re-ranking. As expected, the pri-
mary submission always outperformed the contrastive
one as reported in the official results.

• MSLT: Our primary submissions in this task are en-
semble of 4 models (2 best from each Word and Factor-
1 networks) with equal weights to all the models. Due
to time constraint we were not able to perform adap-

tion on Factor-2 and R2L models, so we discard the
re-ranking step for this task.

TED MSLT
2015 2016 2016

P C P C P
en-de 30.05 29.70 26.56 26.27 38.78
de-en 32.38 32.11 30.30 29.84 35.06
en-fr 39.71 39.49 36.77 36.75 42.98
fr-en 38.44 38.33 37.19 36.75 -

Table 5: Official results of our primary (P) and contrastive
(C) submissions.

6. What did not work
In this section we report experimental results of methods that
were not considered for the final submissions. We believe
that also negative results can be in fact useful to share, espe-
cially when documenting the efforts done to build a compet-
itive system for an evaluation campaign.

6.1. Re-scoring and re-ranking with large language mod-
els (LM)

In § 5.4, we showed that n-best list re-scoring using R2L
models helps to improve the performance of the systems.
These models require parallel data for training and thus can
not leverage the large amount of monolingual data avail-
able. To overcome this limitation, we investigated the use of
large language models (for LM re-scoring) and also machine-
learned ranking techniques that can benefit from the addi-
tional monolingual data.

LM re-scoring is performed using two language models:
i) a 4-gram statistical LM trained with KenLM toolkit [16] on
a monolingual corpus containing ∼3B words selected from
news commentary corpus, and ii) a neural LM trained with
faster-rnnlm toolkit11 on the target side of the pool data (see
Table 1 for statistics). Re-ranking is performed with Tran-
scRater toolkit12 [17] using the features extracted from NMT
decoder along with the LM scores. These features include
the posterior score, mean/min/max/std of word probabilities
and alignment probabilities. These features are used along
with the LM scores to build a feature vector for each hypoth-
esis in the n-best list. Ranking machines are trained to learn
the rank of different hypotheses corresponding to each source
sentence using a pairwise comparison techniques. Note that
the ranks are derived from the sentence-level translation error
rate (TER) scores.

Table 6 shows the results of re-scoring and re-ranking
approaches on two directions: en-de and de-en. The prelim-
inary results on the development set show that R2L+LM re-
scoring improves the performance up to 0.8% BLEU score

11https://github.com/yandex/faster-rnnlm
12https://github.com/hlt-mt/TranscRater



rescoring/reranking en-de de-en
method dev test2014 dev test2014
baseline 30.51 27.17 36.36 23.55
R2L rescoring 30.64 27.33 36.75 23.74
LM rescoring 30.71 27.52 36.90 23.42
R2L+LM rescoring 30.81 27.54 37.14 23.78
TranscRater – 27.22 – 23.73

Table 6: The results of re-scoring and re-ranking approaches
on 12-best lists.

over the baseline, and up to 0.4% over R2L re-scoring.
On the test set, however, the improvement of R2L+LM re-
scoring was marginal in both directions (en-de and de-en).
By applying TranscRater as the re-ranking strategy, we first
observed slight improvements on the tokenized output, how-
ever after normalization and detokenization, we observed
that the BLEU scores reduce. We are still investigating what
is the reason behind this inconsistency.

Finally, since the achievable improvements using LM,
R2L+LM and TranscRater were not consistent, we decided
not to use these approaches for our final submissions.

6.2. Using back-translation for model adaptation

Back-translation is an approach to generate new training in-
stances for MT, where a monolingual corpus usually in the
target language [18, 19], is translated to the source language
and added to the parallel corpora. Different than [18, 19],
however, in this study, we investigated ways of adapting the
translation model by adding artificially-created in-domain
data. The TED track is an ideal opportunity to evaluate this
approach as the task data contain translations of many talks
into both German and French.

In order to evaluate our approach, we trained NMT sys-
tems in the en-de direction using out-domain parallel train-
ing corpora and after 3 updates started adapting these sys-
tems using different in-domain data. In tuning 1, we adapted
the system only on the original in-domain parallel corpus.
In tuning 2, we also added parallel training instances gener-
ated using the following two steps: i) the target sides of the
English-German and English-French in-domain corpora are
translated into English; ii) once obtained the translation, the
the target sides is selected from the original German corpus.
This approach can be seen as a way of generating paraphrases
to the source sentences in the test domain. Some example
outputs are given below.

Reference: Marcel Proust said, “The true voyage of dis-
covery is not so much in seeking new landscapes as in having
new eyes.”

Back-Translation (from DE): Marcel Proust once said
that, “The real voyage of discovery consists not in that you’re
looking for new countries, but that you have new eyes.”

Back-Translation (from FR): Well, Marcel Proust has

this saying, “The real voyage of discovery consists not look-
ing for new landscape, but to have new eyes.”

We used a phrase-based system for building MT systems
to generate the back-translations through cross-validation.
As shown in Figure 3, our preliminary experiments did not
yield significant differences in the two fine-tuning strategies.
This might be due to the different interpretation of the back-
translated data compared to [18, 19], in terms of i) the side of
enriched representation (source instead of target) and ii) the
characteristics of new data (only synthetic instead of natural
and synthetic corpora).

Figure 3: The results of using back-translation for model
adaptation on the IWSLT 2014 TED test set. (BT: Back-
translated data)

7. Conclusions
In this paper, we described FBK’s NMT systems submitted
at IWSLT 2016. Our submissions comprised of 4 language
directions (en-de, de-en, en-fr, and fr-en) for TED and 3 di-
rections (en-de, de-en, and en-fr) for MSLT tasks. All the
systems were trained on a pool data and then adapted to
each task using in-domain data. From our preliminary ex-
periments on TED task for en-de direction, we learned that
word based NMT system had better performance compared
to subwords. This possibly indicates that subwords might
be more suitable for developing general domain translation
systems, where the out-of-vocabulary rate is higher and the
coverage of the training data is lower compared to narrow
domains such as TED and MSLT. Also, we learned that opti-
mizing the network parameters using Adagrad leads to faster
convergence with higher performance compared to Adadelta,
indicating it to be a better option to train NMT systems. The



performance of the word-based models further improved by
the addition of linguistic knowledge in the form of factors.
Moreover, performing inter-network decoding with word and
factored models resulted in higher performance compared to
both single model as well as ensemble of multiple models of
the same network (intra-network decoding). This indicates
that the use of diverse models in decoding helps to lever-
age the strengths of each single model while mitigating their
limitations. All of our submissions are hence based on inter-
network decoding, with an additional step of re-ranking in
the primary submissions to the TED task.

8. Acknowledgements
This work has been partially supported by the EC-funded
project ModernMT (H2020 grant agreement no. 645487).

9. References
[1] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine

translation by jointly learning to align and translate,”
arXiv preprint arXiv:1409.0473, 2014.

[2] R. Sennrich and B. Haddow, “Linguistic Input Fea-
tures Improve Neural Machine Translation,” in Pro-
ceedings of the First Conference on Machine Transla-
tion. Berlin, Germany: Association for Computational
Linguistics, August 2016, pp. 83–91.

[3] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradi-
ent Methods for Online Learning and Stochastic Op-
timization,” Journal of Machine Learning Research,
2011.

[4] M.-T. Luong and C. D. Manning, “Stanford Neural Ma-
chine Translation Systems for Spoken Language Do-
mains,” in Proceedings of the International Workshop
on Spoken Language Translation, 2015.

[5] R. Sennrich, B. Haddow, and A. Birch, “Neural Ma-
chine Translation of Rare Words with Subword Units,”
in Proceedings of the 54th Annual Meeting on Associ-
ation for Computational Linguistics. Association for
Computational Linguistics, 2016.

[6] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” arXiv
preprint arXiv:1406.1078, 2014.

[7] R. Sennrich, B. Haddow, and A. Birch, “Edinburgh
Neural Machine Translation Systems for WMT 16,” in
Proceedings of the First Conference on Machine Trans-
lation. Berlin, Germany: Association for Computa-
tional Linguistics, August 2016, pp. 371–376.

[8] A. Rousseau, “XenC: An Open-Source Tool for Data
Selection in Natural Language Processing,” The Prague

Bulletin of Mathematical Linguistics, no. 100, pp. 73–
82, 2013.

[9] C. Federmann and W. D. Lewis, “Microsoft speech lan-
guage translation (mslt) corpus: The iwslt 2016 release
for english, french and german,” 2016.

[10] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J.
Goodfellow, A. Bergeron, N. Bouchard, and Y. Bengio,
“Theano: new features and speed improvements,” Deep
Learning and Unsupervised Feature Learning NIPS
2012 Workshop, 2012.

[11] P. Gage, “A New Algorithm for Data Compression,”
C Users J., vol. 12, no. 2, pp. 23–38, Feb. 1994.
[Online]. Available: http://dl.acm.org/citation.cfm?id=
177910.177914

[12] H. Schmid, “Probabilistic part-of-speech tagging using
decision trees,” in New methods in language process-
ing. Routledge, 2013, p. 154.

[13] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu,
“BLEU: a method for automatic evaluation of machine
translation,” in Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, 2002,
pp. 311–318.

[14] M. R. Costa-Jussà and J. A. Fonollosa, “Character-
based Neural Machine Translation,” in Proceedings of
the 54th Annual Meeting of the Association for Compu-
tational Linguistics, 2016.

[15] M.-T. Luong and C. D. Manning, “Achieving open vo-
cabulary neural machine translation with hybrid word-
character models,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguis-
tics, 2016.

[16] K. Heafield, “KenLM: Faster and smaller language
model queries,” in Proceedings of the Sixth Workshop
on Statistical Machine Translation. Association for
Computational Linguistics, 2011, pp. 187–197.

[17] S. Jalalvand, M. Negri, M. Turchi, J. G. de Souza,
D. Falavigna, and M. R. Qwaider, “TranscRater: a
Tool for Automatic Speech Recognition Quality Esti-
mation,” ACL 2016, p. 43, 2016.

[18] N. Bertoldi and M. Federico, “Domain adaptation for
statistical machine translation with monolingual re-
sources,” in Proceedings of the Fourth Workshop on
Statistical Machine Translation. ACL, 2009, pp. 182–
189.

[19] R. Sennrich, B. Haddow, and A. Birch, “Improving
neural machine translation models with monolingual
data,” in Proceedings of the The 54th Annual Meeting of
the Association for Computational Linguistics. Berlin,
Germany: Association for Computational Linguistics,
August 2016, pp. 86–96.


