NTT Statistical Machine Translation System for IWSLT 2010

Katsuhito Sudoh, Kevin Duh, Hajime Tsukada

NTT Communication Science Laboratories 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan

sudoh@cslab.kecl.ntt.co.jp

Abstract

In this year's IWSLT evaluation campaign (TALK task), we applied three adaptation techniques: (1) training data selection based on information retrieval approach, (2) subsentence segmentation, and (3) language model adaptation using source-side of the test set. We also applied a sequential labeling method based on conditional random fields for restoring punctuation markers in the ASR input condition. We present and discuss these techniques in this paper, based on the automatic evaluation results.

1. Introduction

Recent advances in statistical machine translation (SMT) research are based on large-scale bilingual and monolingual language resources in the target domains (mainly news and parliament). On the other hand, for other resource-poor domains, building a good SMT system using only the limited language resources is not easy. Then the problem of *domain adaptation* arises: can *out-of-domain* large-scale language resources compensate for limited *in-domain* resources?

This year's IWSLT TALK task supplied a limited indomain resource (less than 0.9M tokens) compared to others (260M tokens total). In such a condition, a simplest approach that uses all corpora equally for the translation model may introduce some biases towards out-of-domain vocabulary and linguistic expression. Thus, we tried three adaptation approach in a standard phrase-based SMT framework:

- (1) training data selection for the translation model based on information retrieval (IR) [1]
- (2) bilingual sentence segmentation into (pseudo-)caption units
- (3) language model adaptation using source-side of the test set [2].

An important aspect in IWSLT evaluation is the translation of automatic speech recognition (ASR) results. It introduces two problems to SMT: ASR errors and the lack of punctuation. The first problem is one of the most challenging problem in MT and other spoken language processing applications; ASR errors usually bring more errors in the language processing pipeline. A common approach for the ASR error problem is the use of multiple ASR candidates in n-bests or lattices. The second problem is also important in MT, because MT outputs should be human-readable and therefore require appropriate punctuation. Our system this year tackles the second problem of punctuation restoration.

The remainder of this paper presents and discusses our approaches in detail.

2. Domain Adaptation

2.1. IR-based training data selection

Out-of-domain resources are expected to include domainindependent vocabulary and linguistic expressions that can be useful to compensate for an insufficient amount of resources in the target domain. However, using much larger amount of out-of-domain data might be harmful to domainspecific translation. We then selectively use the out-ofdomain data according to their similarity to the target domain, by the following IR-based method [1].

First we collect all n-grams in the in-domain bitext for both sides of the language pair. For each language, a hash table is created where the key represents the n-gram and the value represents the count of this ngram in the training data. Then, an out-of-domain sentence is selected if it contains an ngram in this hash, and the hash value is decremented. We no longer retrieve matches if the hash value becomes zero, similar to the Joshua subsampling technique [3]. The rationale for this is to have a balanced coverage of ngrams. This procedure is performed independently for each language side, and the union of the selected sentences forms the IR bitext (i.e. we take the sentence pair if at least one side is retrieved). Note this method differs from the original IR approach [4] in two important aspects: (1) we sample based on training not test data, and (2) this allows us to sample on both sides of the language pair rather than just the source side. We think working with the training data is a practically efficient solution and allows for new IR approaches.

2.2. Bilingual Sub-sentence Segmentation

Another possible problem in the talk translation is a mismatch in transcript style: transcripts of TED talks are segmented into sub-sentence units (captions) and each line in TED transcripts is not a complete sentence. Indeed, the

Figure 1: LM weight optimization using source side.

number of tokens in each aligned line is 29 on average in the supplied out-of-domain bitext, but it is 10 in the indomain bitext. We try to fill this gap by segmenting out-ofdomain transcripts into similar sub-sentence units based on in-domain resources.

First we restore sentences from in-domain sub-sentences, based on punctuations: periods (.) and question marks (?). Then we train a linear support vector machine $(SVM)^1$ classifying sub-sentence boundaries in both language sides, using length-based, word-based, and class-based features. Here, there are too many sub-sentence boundary candidates, so we limit them to ones which satisfy a constraint same as Moses phrase extraction constraint over grow-diag-final word alignment. By this constraint, we only consider small number of boundary candidates that are consistent with word alignment. The length-based features consist of lengths of current sub-sentence units and original sentences in both language sides. The word- and class-based features are unigrams and bigrams of words and word classes around the boundary candidate. The word classes are detemined by mkcls.

2.3. LM Mixture Weight Optimization towards Test Set

The third problem that we focus on is the language model (LM). A common method for LM adaptation is weighted interpolation of multiple LMs from different resources. The weights are determined by the perplexity on some held-out data in the target language, or, in recent SMT framework, they can be optimized through system-wide optimization like minimum error rate training (MERT). In the last year's IWSLT evaluation, the FBK team optimized the weights of the *target-side* LMs using the *source side* input sentences with promising results [2]. Although their LM weight optimization was sentence-by-sentence, we simply determine one set of LM weights for the whole test set according to the test set perplexity, using SRILM's compute-best-mix. The procedure is illustrated in Figure 1.

¹We used LIBOCAS (http://cmp.felk.cvut.cz/~xfrancv/ocas/html/).

Table 1: Features for punctuation restoration. l_i is a punctuation labels for the *i*-th word w_i and c_i is the word class of w_i .

word-based feature	class-based feature
(w_i, l_i)	(c_i, l_i)
(w_{i+1}, l_i)	(c_{i+1}, l_i)
(w_i, w_{i+1}, l_i)	(c_i, c_{i+1}, l_i)
(w_{i-1}, w_i, l_i)	(c_{i-1}, c_i, l_i)
$(w_{i-2}, w_{i-1}, w_i, l_i)$	$(c_{i-2}, c_{i-1}, c_i, l_i)$
$(w_{i-1}, w_i, w_{i+1}, l_i)$	$(c_{i-1}, c_i, c_{i+1}, l_i)$
$(w_i, w_{i+1}, w_{i+2}, l_i)$	$(c_i, c_{i+1}, c_{i+2}, l_i)$
$(w_{i-2}, w_{i-1}, w_i, w_{i+1}, l_i)$	$(c_{i-2}, c_{i-1}, c_i, c_{i+1}, l_i)$
$(w_{i-1}, w_i, w_{i+1}, w_{i+2}, l_i)$	$(c_{i-1}, c_i, c_{i+1}, c_{i+2}, l_i)$
	$(c_{i-2}, c_{i-1}, c_i, c_{i+1}, c_{i+2}, l_i)$

3. Punctuation Restoration

An important problem on this year's task is punctuation restoration for the ASR inputs. We tackle the problem as a sequential labeling problem like part-of-speech tagging and sentence boundary detection, using conditional random fields (CRFs)² [5, 6]. We define four punctuation labels for ASR 1-best words: PERIOD (.), COMMA (,), QUESTION (?), and NO_PUNC (no punctuation marks), which represent the punctuation mark following the words. Features used on the *i*-th word w_i with its label l_i are listed in Table 1, where c_i represents the word class of w_i determined by mkcls. Once the labeling model is trained, we can restore punctuation marks in ASR 1-best results by applying the model.

Lu and Ng [7] proposed more sophisticated CRF-based punctuation restoration ³. Our method is almost the same as their baseline by linear-chain CRFs, with a small difference in features.

4. Experiment

4.1. Resources

4.1.1. In-domain and Out-of-domain Corpora

We used TED (in-domain), Europarl, UN, and News Commentary (out-of-domain, hereafter *OOD*) corpora for training⁴. For the out-of-domain corpora, we applied IR-based sentence selection described in 2.1 and retrieved 364,330 sentences (hereafter *IR*). IR was further segmented into sub-sentence units by the segmenter described in 2.2, and 899,502 sub-sentences were obtained (hereafter *IR-seg*). Corpus statistics are summarized in Table 2, and the data flow is illustrated in Figure 2.

²We used CRF++ (http://crfpp.sourceforge.net/).

³We independently developed the CRF-based method prior to its publication.

 $^{^{4}\}mbox{We}$ found some problematic sentences in 10^{9} corpus, so we completely omitted it.

Table 2: Corpus statistics.										
Corpus	#sentences	#tokens (En)	#tokens (Fr)							
In-domain										
TED	83,923	841,107	893,381							
Out-of-dom	ain									
OOD	9,041,376	262,633,459	300,994,876							
(Europarl)	1,726,535	47,955,610	52,722,393							
(UN)	7,230,217	212,612,925	245,848,393							
(News)	84,624	2,064,924	2,424,090							
IR	364,330	8,561,030	9,466,005							
IR-seg	899,502	8,561,030	9,466,005							

Figure 2: Data flow in the experiment.

4.1.2. Preprocessing

We used tokenizer.perl in the WMT baseline system⁵, with a slight modification for quotation marks⁶. To avoid underflow in word alignment, long sentence pairs whose number of tokens in either language side exceeded 64 were filtered out.

4.2. Baseline System

Our baseline system almost followed the WMT baseline system, using the corpora above. The word alignment was estimated by mgizapp-0.6.3 with grow-diag-final-and heuristics or berkeleyaligner_unsupervised-2.1 (experimentally chosen according to the cross-validation performance below). The LMs were word 4-gram models trained using SRILM-1.5.9: four corpus-wise LMs from TED, Europarl, UN, and News. The decoder was moses-2010-04-26 and its parameters were optimized to the development set (only Reference, no ASR) by mert-moses-new.pl.

4.3. Results

4.3.1. Development Cross Validation Results and Selected Configurations

We tested various combinations of the adaptation approach described so far in our development phase; The supplied development set was divided into two non-overlapping sets⁷ and used for cross validation.

Table 3 shows the cross validation results of several configurations, varying i) training data of phrase table, ii) target for LM mixture weight optimization, and iii) word alignment method. Metrics are BLEU, TER, and BLEU - TER + 1 (B-T+1). We chose the best one as our primary configuration, and three contrastive configurations to the primary.

4.3.2. Results

Official automatic evaluation results for our primary and contrastive runs and additional results in BLEU, TER, and B-T+1 are shown in Table 4. The evaluation on ASR was based on automatic sentence segmentation tool supplied by the organizers [8]. Our primary run was the best among our submitted runs but not among all methods compared in 4.3.1.

Through our significance test [9], differences among most methods were not significant – significant differences were observed only between the methods with out-of-domain data (OOD, IR, and IR-seg) and those with only TED data.

4.3.3. Evaluation of Punctuation Restoration

To investigate the effect of our punctuation restoration, we conducted additional experiment using original ASR results (i.e., without punctuation) as decoder inputs. We compared the BLEU scores in three different conditions:

- 1) case+punc: with true casing and punctuation,
- case+no_punc: with true casing but without punctuation,
- 3) *no_case+no_punc*: without casing and punctuation.

The punctuation markers ignored in *no_punc* conditions followed the official evaluation setting (., "; :? ()!).

The results are shown in Table 5. The *case+punc* results show our method successfully restored correct punctuation markers. Even in punctuation insensitive evaluation (*case+no_punc* and *no_case+no_punc*), our method achieved significant improvement in TER. On the other hand, the improvement in BLEU was not significant in case-insensitive conditions. These differences may come from *shift* errors, which can be captured in TER evaluation – shift errors were reduced by the punctuation restoration (0.107 in *case+no_punc* and 0.115 in *no_case+no_punc*) from those

⁵http://www.statmt.org/wmt10/baseline.html

⁶tokenizer.perl replaces ' (left quotation mark) with ' (right quotation mark) but we didn't change them.

⁷One was composed of *docids* 69, 129, 453, and 531 (644 sentences), and the other was composed of 326, 327, 328, 332, 335, 340, and 359 (663 sentences). They were chosen to balance the number of sentences between sets.

,							
Run	phrase table	LM mixture	word	Reference	Reference (cross validation)		
Kull	training data	weight target	alignment	BLEU	TER	B-T+1	
primary	TED+IR	test (source)	berkeley	0.2540	0.6548	0.5992	
	TED+IR	test (source)	mgiza	0.2504	0.6548	0.5956	
contrastive-2	TED+IR	dev (target)	berkeley	0.2482	0.6611	0.5871	
	TED+IR	dev (target)	mgiza	0.2482	0.6603	0.5879	
	TED+IR	MERT	berkeley	0.2504	0.6591	0.5913	
	TED+IR	MERT	mgiza	0.2410	0.6694	0.5716	
	TED+OOD	test (source)	berkeley	0.2564	0.6544	0.6020	
contrastive-1	TED+OOD	test (source)	mgiza	0.2561	0.6582	0.5979	
	TED+OOD	dev (target)	berkeley	0.2554	0.6556	0.5998	
	TED+OOD	dev (target)	mgiza	0.2539	0.6570	0.5969	
	TED+OOD	MERT	berkeley	0.2494	0.6594	0.5900	
	TED+OOD	MERT	mgiza	0.2521	0.6637	0.5884	
	TED+IR-seg	test (source)	berkeley	0.2445	0.6615	0.5830	
contrastive-3	TED+IR-seg	test (source)	mgiza	0.2466	0.6602	0.5864	
	TED+IR-seg	dev (target)	berkeley	0.2492	0.6566	0.5926	
	TED+IR-seg	dev (target)	mgiza	0.2479	0.6624	0.5855	
	TED+IR-seg	MERT	berkeley	0.2478	0.6630	0.5848	
	TED+IR-seg	MERT	mgiza	0.2426	0.6636	0.5790	
	TED	test (source)	berkeley	0.2407	0.6698	0.5709	
	contrastive-2	Kuntraining dataprimaryTED+IRTED+IRTED+IRcontrastive-2TED+IRTED+IRTED+IRTED+IRTED+IRTED+ODTED+OODcontrastive-1TED+OODTED+ODTED+OODTED+ODTED+ODTED+ODTED+ODTED+IR-segTED+IR-segTED+IR-segTED+IR-segTED+IR-segTED+IR-segTED+IR-segTED+IR-segTED+IR-segTED+IR-segTED+IR-segTED+IR-seg	Runtraining dataweight targetprimaryTED+IRtest (source)TED+IRtest (source)contrastive-2TED+IRdev (target)TED+IRdev (target)TED+IRMERTTED+IRMERTTED+ODtest (source)contrastive-1TED+ODTED+OODtest (source)contrastive-1TED+OODTED+OODdev (target)TED+OODMERTTED+OODMERTTED+OODMERTTED+IR-segtest (source)contrastive-3TED+IR-segTED+IR-segdev (target)TED+IR-segdev (target)TED+IR-segMERTTED+IR-segMERTTED+IR-segMERTTED+IR-segMERTTED+IR-segMERTTED+IR-segMERTTED+IR-segMERTTED+IR-segMERTTED+IR-segMERTTED+IR-segMERTTED+IR-segMERTTED+IR-segMERTTED+IR-segMERTTED+IR-segMERT	Runtraining dataweight targetalignmentprimaryTED+IRtest (source)berkeleyTED+IRtest (source)mgizacontrastive-2TED+IRdev (target)berkeleyTED+IRdev (target)mgizaTED+IRMERTberkeleyTED+IRMERTberkeleyTED+IRMERTmgizaTED+IRMERTmgizaTED+ODDtest (source)berkeleycontrastive-1TED+OODtest (source)mgizaTED+OODdev (target)berkeleyTED+OODdev (target)mgizaTED+OODMERTmgizaTED+OODMERTmgizaTED+OODMERTmgizaTED+IR-segtest (source)berkeleycontrastive-3TED+IR-segtest (source)mgizaTED+IR-segdev (target)berkeleyTED+IR-segdev (target)berkeleyTED+IR-segdev (target)berkeleyTED+IR-segMERTberkeleyTED+IR-segMERTberkeleyTED+IR-segMERTberkeleyTED+IR-segMERTberkeleyTED+IR-segMERTberkeleyTED+IR-segMERTberkeleyTED+IR-segMERTberkeleyTED+IR-segMERTberkeleyTED+IR-segMERTberkeleyTED+IR-segMERTberkeleyTED+IR-segMERTberkeleyTED+IR-segMERTberkeley	RunI training dataweight targetalignmentBLEUprimaryTED+IRtest (source)berkeley0.2540TED+IRtest (source)mgiza0.2504contrastive-2TED+IRdev (target)berkeley0.2482TED+IRdev (target)mgiza0.2482TED+IRMERTberkeley0.2504TED+IRMERTberkeley0.2504TED+IRMERTmgiza0.2482TED+ODDtest (source)berkeley0.2504TED+ODDtest (source)berkeley0.2504TED+ODDtest (source)mgiza0.2564contrastive-1TED+ODDtest (source)mgiza0.2554TED+ODDdev (target)berkeley0.2539TED+ODDMERTberkeley0.2494TED+ODDMERTmgiza0.2521TED+IR-segtest (source)berkeley0.2445contrastive-3TED+IR-segtest (source)mgiza0.2466TED+IR-segdev (target)berkeley0.2492TED+IR-segdev (target)berkeley0.2479TED+IR-segMERTberkeley0.2479TED+IR-segMERTberkeley0.2478TED+IR-segMERTberkeley0.2478TED+IR-segMERTberkeley0.2478TED+IR-segMERTberkeley0.2478TED+IR-segMERTberkeley0.2478TED+IR-segMERTberkeley0.2	RunI training dataweight targetalignmentBLEUTERprimaryTED+IRtest (source)berkeley0.25400.6548TED+IRtest (source)mgiza0.25040.6548contrastive-2TED+IRdev (target)berkeley0.24820.6611TED+IRdev (target)mgiza0.24820.6603TED+IRMERTberkeley0.25040.6591TED+IRMERTmgiza0.24100.6694TED+ODtest (source)berkeley0.25640.6544contrastive-1TED+ODtest (source)mgiza0.25640.6582TED+ODdev (target)berkeley0.25540.6556TED+ODdev (target)mgiza0.25390.6570TED+ODMERTberkeley0.25210.6637TED+ODMERTmgiza0.25210.6637TED+IR-segtest (source)berkeley0.24450.6615contrastive-3TED+IR-segtest (source)mgiza0.2466TED+IR-segdev (target)berkeley0.24450.6615contrastive-3TED+IR-segtest (source)mgiza0.2479TED+IR-segdev (target)berkeley0.24780.6630TED+IR-segMERTberkeley0.24780.6630TED+IR-segMERTberkeley0.24780.6630TED+IR-segMERTberkeley0.24780.6630TED+IR-segMERTberkeley <td>Kuntraining dataweight targetalignment$BLEU$TER$B-T+1$primaryTED+IRtest (source)berkeley$0.2540$$0.6548$$0.5992$TED+IRtest (source)mgiza$0.2504$$0.6548$$0.5956$contrastive-2TED+IRdev (target)berkeley$0.2482$$0.6611$$0.5871$TED+IRdev (target)mgiza$0.2482$$0.6603$$0.5879$TED+IRMERTberkeley$0.22482$$0.6603$$0.5879$TED+IRMERTberkeley$0.2504$$0.6591$$0.5913$TED+IRMERTmgiza$0.2410$$0.6694$$0.5716$TED+ODtest (source)berkeley$0.2564$$0.6544$$0.6020$contrastive-1TED+ODtest (source)mgiza$0.2554$$0.6556$$0.5998$TED+ODdev (target)berkeley$0.2554$$0.6556$$0.5998$TED+ODdev (target)mgiza$0.2539$$0.6570$$0.5969$TED+ODMERTberkeley$0.2445$$0.6615$$0.5830$contrastive-3TED+IR-segtest (source)mgiza$0.2466$$0.6602$$0.5864$TED+IR-segdev (target)berkeley$0.2445$$0.6615$$0.5830$contrastive-3TED+IR-segdev (target)berkeley$0.2479$$0.6624$$0.5855$TED+IR-segdev (target)berkeley$0.2479$$0.6624$$0.5848$TED+IR-seg</td>	Kuntraining dataweight targetalignment $BLEU$ TER $B-T+1$ primaryTED+IRtest (source)berkeley 0.2540 0.6548 0.5992 TED+IRtest (source)mgiza 0.2504 0.6548 0.5956 contrastive-2TED+IRdev (target)berkeley 0.2482 0.6611 0.5871 TED+IRdev (target)mgiza 0.2482 0.6603 0.5879 TED+IRMERTberkeley 0.22482 0.6603 0.5879 TED+IRMERTberkeley 0.2504 0.6591 0.5913 TED+IRMERTmgiza 0.2410 0.6694 0.5716 TED+ODtest (source)berkeley 0.2564 0.6544 0.6020 contrastive-1TED+ODtest (source)mgiza 0.2554 0.6556 0.5998 TED+ODdev (target)berkeley 0.2554 0.6556 0.5998 TED+ODdev (target)mgiza 0.2539 0.6570 0.5969 TED+ODMERTberkeley 0.2445 0.6615 0.5830 contrastive-3TED+IR-segtest (source)mgiza 0.2466 0.6602 0.5864 TED+IR-segdev (target)berkeley 0.2445 0.6615 0.5830 contrastive-3TED+IR-segdev (target)berkeley 0.2479 0.6624 0.5855 TED+IR-segdev (target)berkeley 0.2479 0.6624 0.5848 TED+IR-seg

mgiza

berkeley

mgiza

berkeley

mgiza

0.2351

0.2426

0.2310

0.2324

0.2300

test (source)

dev (target)

dev (target)

MERT

MERT

Table 3: 2-fold cross validation results in BLEU, TER, and BLEU-TER+1 (B-T+1) on supplied development set (with true casing and punctuation). **Bold** scores represent the best ones. Gray rows represents the methods tested after the official evaluation period.

without punctuation (0.116 and 0.126, respectively). This suggests punctuation markers are useful to reduce shift errors (i.e., constraining reordering) in SMT, and restoring punctuation markers in ASR results is important in spoken language translation.

TED

TED

TED

TED

TED

5. Discussion

Among three adaptation approaches, the performance of IRbased adaptation (TED+IR) was comparable with the use of all out-of-domain data (TED+OOD), using only 4% of bitexts. We expected the IR-based adaptation worked better, but could not achieve significant improvements. The problem is further discussed in our technical paper [1].

The LM weight optimization toward test set was a bit better than the others in development, but did not in test. It may be related to data similarity among the data sets but is not clear in current results.

The sub-sentence segmentation did not work in most cases, while we expected that it can help to reduce word alignment ambiguity in training translation models by shortening sentences (as suggested in [10]). One possibility we think is that our sub-sentence segmentation was naive and not sufficient for decreasing alignment ambiguity. Another possibility is that word alignment is easier between English and French, compared to distant languages like English and Japanese.

0.6761

0.6637

0.6776

0.6761

0.6832

0.5590

0.5789

0.5534

0.5563

0.5468

6. Conclusion

We applied three adaptation methods to this year's TALK task. They sometimes work, but sometimes do not. The additional use of out-of-domain data improved SMT performance in the experiment, but we could not achieve further significant improvement by our adaptation methods. For more effective adaptation methods, we need further studies on how adaptation works, from detailed analyses such as the comparison among corpus-, document-, and sentence-wise adaptation. We also applied a CRF-based punctuation restoration to ASR translation and improved SMT performance, especially in TER.

7. Acknowledgment

We would like to thank the evaluation committee for their efforts in the evaluation campaign. We also thank two anonymous reviewers for their helpful comments.

Table 4: Official	and additional a	utomatic evaluation	results in H	BLEU and TER,	and BLEU-T	ER+1 (B-T+1) (with true casing
and punctuation).	Bold scores re	present the best on	es. Gray ro	ows represents th	he methods te	ested after the	official evaluation
period.							

Run	phrase table	LM weight	word		Reference			ASR 1-best			
Kull	training data	mixture target	alignment	BLEU	TER	B-T+1	BLEU	TER	B-T+1		
primary	TED+IR	test (source)	berkeley	0.2598	0.5784	0.6814	0.1623	0.6923	0.4700		
	TED+IR	test (source)	mgiza	0.2572	0.5765	0.6807	0.1603	0.6905	0.4698		
contrastive-2	TED+IR	dev (target)	berkeley	0.2594	0.5788	0.6806	0.1621	0.6922	0.4699		
	TED+IR	dev (target)	mgiza	0.2623	0.5749	0.6874	0.1617	0.6899	0.4718		
	TED+IR	MERT	berkeley	0.2599	0.5866	0.6733	0.1645	0.6967	0.4678		
	TED+IR	MERT	mgiza	0.2541	0.5826	0.6715	0.1587	0.6945	0.4642		
	TED+OOD	test (source)	berkeley	0.2541	0.5832	0.6709	0.1603	0.6939	0.4664		
contrastive-1	TED+OOD	test (source)	mgiza	0.2504	0.5817	0.6687	0.1591	0.6931	0.4660		
	TED+00D	dev (target)	berkeley	0.2551	0.5853	0.6698	0.1611	0.6937	0.4674		
	TED+OOD	dev (target)	mgiza	0.2537	0.5796	0.6741	0.1592	0.6937	0.4655		
	TED+OOD	MERT	berkeley	0.2464	0.5998	0.6466	0.1575	0.7030	0.4545		
	TED+OOD	MERT	mgiza	0.2587	0.5938	0.6649	0.1636	0.7071	0.4565		
	TED+IR-seg	test (source)	berkeley	0.2633	0.5770	0.6863	0.1627	0.6929	0.4698		
contrastive-3	TED+IR-seg	test (source)	mgiza	0.2562	0.5788	0.6774	0.1612	0.6933	0.4679		
	TED+IR-seg	dev (target)	berkeley	0.2597	0.5748	0.6849	0.1608	0.6920	0.4688		
	TED+IR-seg	dev (target)	mgiza	0.2615	0.5758	0.6857	0.1619	0.6925	0.4694		
	TED+IR-seg	MERT	berkeley	0.2539	0.5844	0.6695	0.1598	0.6964	0.4634		
	TED+IR-seg	MERT	mgiza	0.2530	0.5843	0.6687	0.1559	0.6980	0.4579		
	TED	test (source)	berkeley	0.2515	0.5876	0.6639	0.1555	0.7012	0.4543		
	TED	test (source)	mgiza	0.2464	0.5921	0.6543	0.1538	0.7017	0.4521		
	TED	dev (target)	berkeley	0.2513	0.5945	0.6568	0.1556	0.7066	0.4490		
	TED	dev (target)	mgiza	0.2480	0.5954	0.6526	0.1553	0.7051	0.4502		
	TED	MERT	berkeley	0.2482	0.5913	0.6569	0.1535	0.7027	0.4508		
	TED	MERT	mgiza	0.2295	0.6011	0.6284	0.1414	0.7066	0.4348		

Table 5: Results with and without punctuation restoration (PR) by primary configuration. Speech translation results are from three conditions: case+punc: with true casing and punctuation, $case+no_punc$: with true casing but without punctuation, $no_ccase+no_punc$: without casing and punctuation. **Bold** results are statistically significant (**: p < .01, *: p < .05).

ſ	-	case+punc			case+no_punc			no_case+no_punc		
		BLEU	TER	B-T+1	BLEU	TER	B-T+1	BLEU	TER	B-T+1
ſ	w/PR	0.1623**	0.6923*	0.4700**	0.1735	0.7243**	0.4492	0.1850	0.7059**	0.4791*
	w/o PR	0.1428	0.7029	0.4399	0.1719	0.7407	0.4312	0.1802	0.7270	0.4532

Proceedings of the 7th International Workshop on Spoken Language Translation Paris, December 2nd and 3rd, 2010

8. References

- K. Duh, K. Sudoh, and H. Tsukada, "Analysis of translation model adaptation in statistical machine translation," in *Proc. IWSLT 2010*.
- [2] N. Bertoldi, A. Bisazza, M. Cettolo, G. Sanchis-Trilles, and M. Federico, "FBK @ IWSLT-2009," in *Proc. IWSLT 2009*, pp. 37–44.
- [3] Z. Li, C. Callison-Burch, C. Dyer, S. Khudanpur, L. Schwartz, W. Thornton, J. Weese, and O. Zaidan, "Joshua: An open source toolkit for parsing-based machine translation," in *Proc. WMT 2009*, pp. 135–139.
- [4] A. S. Hildebrand, M. Eck, S. Vogel, and A. Waibel, "Adaptation of the translation model for statistical machine translation based on information retrieval," in *Proc. EAMT 2005*, pp. 135–142.
- [5] J. Lafferty, A. McCallum, and F. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in *Proc. ICML*, 2001, pp. 282– 289.
- [6] Y. Liu, A. Stolcke, E. Shriberg, and M. Harper, "Using conditional random fields for sentence boundary detection in speech," in *Proc. ACL*, 2005, pp. 451–458.
- [7] W. Lu and H. T. Ng, "Better punctuation prediction with dynamic conditional random fields," in *Proc. EMNLP 2010*, October, pp. 177–186.
- [8] E. Matusov, G. Leusch, O. Bender, and H. Ney, "Evaluating machine translation output with automatic sentence segmentation," in *Proc. IWSLT 2005*.
- [9] Y. Zhang, S. Vogel, and A. Waibel, "Interpreting BLEU/NIST scores: How much improvement do we need to have a better system?" in *Proc. LREC 2004*, pp. 2051–2054.
- [10] K. Sudoh, K. Duh, H. Tsukada, T. Hirao, and M. Nagata, "Divide and translate: Improving long distance rerordering in statistical machine translation," in *Proc. WMT-MetricsMATR*, 2010.