
65

Supporting Controlled Language Authoring
Pim van der Eijk and Jacqueline van Wees

Introduction3

Since the early 1990s, Cap Gemini Language Technology (currently part of Cap Gemini’s
Advanced Technology Services group, Utrecht, the Netherlands) has been developing
software to support large scale document creation and translation of technical
documentation using controlled sublanguages, and deploying this software in customer
projects. From its inception, activities have concentrated on Controlled Languages
satisfying severe lexical and syntactic restrictions, such as on-line help texts, software
manuals, and aerospace maintenance manuals.

The formalism for analysis grammars has a built-in mechanism for word-level, morpho-
syntactic and terminological error correction. In addition to this, it is possible to specify
more general correction transformation annotations to rules. Grammars can be compiled
into correction modules that can be integrated in commercial DTP products for
interactive use by technical writers.

Controlled Languages and applications

Controlled sublanguages are derived variants of sublanguages, constructed to impose
precise coverage bounds and application-specific additional constraints such as improved
understandability, ambiguity reduction and increased ease of (machine) translation. User
acceptance and clear business benefits are important factors determining feasibility and
success of Controlled Language implementations.

The business case for investment in (computer support for) Controlled Language is
application and customer dependent. In some cases, it can be based on a time to market
reduction for localized foreign language versions of products, which can be achieved by
shortening editorial review cycles and reducing Machine Translation post-editing costs.
In other cases, improved quality of technical documentation can reduce the Mean Time
To Repair metric for complex, expensive systems, and thus reduce cost or improve
customer satisfaction. Fortunately, case studies demonstrating these benefits exist and
increase market interest in Controlled Language technology and services.

There are two important acceptance factors regarding the introduction of a Controlled
Language in a user community.

• A first criterion is the degree to which users, both authors and the target audience of
the documents, find sample representative sublanguage documents, rewritten in the
Controlled Language, to be acceptable paraphrases of the original documents.

 Our experience confirms the experience at other sites that rewritten documents often
match or exceed the originals in clarity and ease of understanding.

3 An earlier version of this document appeared in the first Controlled Language Application Workshop,
Leuven, 1996.

66

• A second criterion for a “natural” sublanguage is the ease with which technical writers
can create new sublanguage documents in the Controlled Language, and perceive the
Controlled Language to be intuitively “close” to the sublanguage on which it is based.

In practice, the second restriction is considerably harder. Grammar restrictions often can
only be expressed in a linguistic jargon that is not always easy to explain to technical
writers, who normally are domain experts with no or limited linguistic background. This
can be alleviated to some extent by using dedicated authors, who are trained and coached
well in the use of the system, and useful feedback from the system.

Activities and phases in Controlled Language application

As we define the concept, a Controlled Language is a variant of an existing sublanguage,
in which expressions in the sublanguage are related, via a paraphrase relation, to
expressions in the Controlled Language that satisfy specific additional constraints.
Documents paraphrased, or created from scratch, in the Controlled Language should be
able to perform the communicative functions of the document at least as well as
corresponding documents in the non-Controlled Language, throughout the various stages
in the document lifecycle.

The design of a Controlled Language therefore involves the following activities:

1. Sublanguage analysis;

2. Specification of constraints on the Controlled Language;

3. Specification of a paraphrase relation from expressions in the sublanguage to
expressions in the Controlled Language.

In practice, the three classes of activities will be separated temporally into separate
(phases of) projects, ranging from initial analysis, as part of an initial feasibility study, to
implementation. Sublanguage analysis requires the availability of a representative corpus
for the sublanguage. Issues to be looked into during analysis are, for example, word
volume, translation workload, lexical growth, parts of speech distribution, terminological
ratio, homography and polysemy ratio, lexical coverage projection and linguistic
complexity ratio of major phrase structures.

The second element in the specification of the Controlled Language is the specification of
the Controlled Language. The specification of the Controlled Language can be
formalized as a grammar in a grammar formalism and an associated lexicon that can be
compiled into a recognizer or parser of the Controlled Language. In applications
involving translation, development of this grammar will normally be synchronized with
development of the translation system. Existing industry specifications such as the
aerospace industry’s Simplified English standard can be viewed as starting points in the
development of these grammars.

The third element of a Controlled Language is the association of expressions in the
uncontrolled sublanguage and expressions in its controlled subset. To some extent, it will
be possible to formalize this association as lexical or syntactic transformations from the
sublanguage into the Controlled Language. There can be zero (no paraphrase in the
Controlled Language), a single (rewritable to a single, possibly identical, Controlled
Language expression), or many (an ambiguous sublanguage expression) Controlled

67

Language expressions per sublanguage expression. Part of the association, e.g. the part
described as informal stylistic instructions in a style guide, will not be formalizable at all.
In some cases, a particular error type can be detected, but not corrected automatically. In
these cases, it is sometimes possible to generate informative messages that could help
technical writers rephrase the sentence.

To support the authoring process, it is therefore necessary to combine a variety of
functions in a single system, viz. recognition and parsing of a Controlled Language,
transformation of general sublanguage expressions into Controlled Language, and error
correction. Cap Gemini’s lingware formalism was designed to incorporate these various
types of functionality in a single formalism.

It should be stressed that only some sublanguages allow for a Controlled Language
approach because of insufficient lexical or grammatical convergence, or because of
inherent ambiguity.

Authoring Controlled Languages

Technical writers often find it hard to create new documents in a Controlled Language (or
to rewrite existing documents), especially if a large number of previously acceptable
sublanguage constructions can no longer be used. To prevent frustration, they should
know how to paraphrase these constructions in the Controlled Language. Apart from
training, it is important to provide authors with supporting software to support the
authoring process. These supporting function can be divided in checking tools, which
generate informative diagnostic messages for authors, and correction tools. The objective
is to be able to correct as many errors as possible, and as automatically as possible.

In our system, a correction module accepts a language defined as four successively larger
sets.

1. The system recognizes and assigns lexical and structural descriptions to the subset of
sublanguage expressions that conform to language control constraints.

2. This set is expanded to include as large a part of the sublanguage as can be
transformed, automatically or interactively, to the Controlled Language.

3. A third expansion is inclusion of variant expressions that contain morpho-syntactic
errors.

4. Finally, expressions containing orthographic errors are corrected.

An integration of the system with Microsoft Word has been developed and is currently
being marketed within the international customer base of Cap Gemini. Similar
integrations with other desktop publishing products will be developed, depending on
customer demand and market feedback.

Controlled Language analysis and correction lingware

The Cap Gemini lingware formalism was designed to facilitate development of
interactive grammar checking applications. Using proprietary LR compiler software, the
grammars can be compiled into correction modules, performance of which is fast enough
for interactive use on commodity office PCs. In the sample application discussed below,
the correction engine is accessed at runtime, as a shared library, from Microsoft Word.

68

The lexical database is stored separately, and has its own separate maintenance utilities.
To obviate the need for computationally expensive run-time morphological analysis, the
run-time system uses an exhaustive full-form lexicon.

The valid constructs of the Controlled Language are described using extended context
free grammar rules, annotated with dependency relations among attributes. The grammar
can be augmented with correction rules, which are similar to normal grammar rules but
are enhanced with instructions for local reordering and deletion, insertion of lexical
items, and diagnostic messages. In the lexicon, words are organized into synonym sets,
individual members of which can be marked as (non-)preferred. Per rule, word forms are
organized in syntactic equivalence classes based on attribute dependencies, which are
used to carry out morpho-syntactic (e.g. agreement) and terminological (use of
unapproved word forms) corrections.

As an illustrative example, consider the following English input sentence, which contains
non-preferred terms, a morpho-syntactic and an orthographic error:

Check that leading edges conforms to values in teh table.

It is converted automatically to the following ‘correct’ Simplified English sentence:

Make sure that the leading edges agree with the values in the table.

First of all, and least interestingly, the misspelled article teh is corrected to the via a fuzzy
string matching mechanism. In analysis, the non-approved word form “conforms” is
connected to a synonym set that has “AGREE” as approved word. In the grammatical
context, this lemma is associated with the inflected forms “agree” and “agrees”, the first
of which is selected because of agreement dependency with the subject noun phrase.
Similarly, the preposition “to” is associated with the generic complement PP preposition.
The word form “with” is selected because of agreement in the attribute pform with the
verb.

The unapproved word “checks” is associated with three approved constructions, viz.
“MAKE SURE”, “MEASURE”, and “EXAMINE”. The latter two take NP complements
and the former a sentential complement, as appropriate in the case at hand. The Noun
Phrase rewrite rule contains an insertion instruction that supplies the missing article
preceding the plural noun. This sentence can therefore be corrected in a completely
automatic fashion. Use of “check” with a complement NP would be ambiguous between
“MEASURE” and “EXAMINE”. In interactive use, the correction engine would consult
with the user to obtain the necessary disambiguation information.

Integrating language correction in an authoring environment

Controlled Language correction, as a supporting function in a document creation
process, is naturally viewed as an extension to standard document editing functions.
Modern desktop publishing products support this view by offering integration toolkits
that can be used to add specialized functionality to the core DTP functionality. As an
example of such an extension, we developed a prototype integration of a Controlled
English correction system in Microsoft Word. The following example shows the
application of the editor to a sample aerospace document.

69

70

